Jens Schlossmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3616920/publications.pdf

Version: 2024-02-01

79 3,704 33
papers citations h-index

80 80 80 3573 all docs docs citations times ranked citing authors

60

g-index

#	Article	IF	CITATIONS
1	Activation of soluble guanylyl cyclase signalling with cinaciguat improves impaired kidney function in diabetic mice. British Journal of Pharmacology, 2022, 179, 2460-2475.	5.4	12
2	Function of IRAG2 Is Modulated by NO/cGMP in Murine Platelets. International Journal of Molecular Sciences, 2022, 23, 6695.	4.1	1
3	Editorial of the Special Issue: cGMP-Signaling in Cells and Tissues: Molecular, Functional and Pharmacological Aspects. International Journal of Molecular Sciences, 2022, 23, 6482.	4.1	O
4	Targeted Delivery of Soluble Guanylate Cyclase (sGC) Activator Cinaciguat to Renal Mesangial Cells via Virus-Mimetic Nanoparticles Potentiates Anti-Fibrotic Effects by cGMP-Mediated Suppression of the TGF-Î ² Pathway. International Journal of Molecular Sciences, 2021, 22, 2557.	4.1	13
5	Loss of PKGl \hat{I}^2 /IRAG1 Signaling Causes Anemia-Associated Splenomegaly. International Journal of Molecular Sciences, 2021, 22, 5458.	4.1	4
6	Asymmetric dimethylarginine in psychiatric disorders. Psychiatry Research, 2021, 300, 113901.	3.3	3
7	IRAG2 Interacts with IP3-Receptor Types 1, 2, and 3 and Regulates Intracellular Ca2+ in Murine Pancreatic Acinar Cells. International Journal of Molecular Sciences, 2021, 22, 13409.	4.1	9
8	IRAG1 Deficient Mice Develop PKG1 \hat{I}^2 Dependent Pulmonary Hypertension. Cells, 2020, 9, 2280.	4.1	7
9	An innovative, time―and costâ€saving method for the quantification of asymmetric dimethylarginine in serum by highâ€performance liquid chromatography without evaporation. Separation Science Plus, 2020, 3, 571-577.	0.6	1
10	Homozygous mutation in murine retrovirus integration site 1 gene associated with a nonâ€syndromic form of isolated familial achalasia. Neurogastroenterology and Motility, 2020, 32, e13923.	3.0	2
11	Protein Kinase G Is Involved in Acute but Not in Long-Term Regulation of Renin Secretion. Frontiers in Pharmacology, 2019, 10, 800.	3.5	11
12	Relaxin and extracellular matrix remodeling: Mechanisms and signaling pathways. Molecular and Cellular Endocrinology, 2019, 487, 59-65.	3.2	42
13	Determination of total and free ceftolozane and tazobactam in human plasma and interstitial fluid by HPLC-UV. Journal of Pharmaceutical and Biomedical Analysis, 2019, 163, 34-38.	2.8	19
14	Impact of Experimental Variables on the Protein Binding of Tigecycline in Human Plasma as Determined by Ultrafiltration. Journal of Pharmaceutical Sciences, 2018, 107, 739-744.	3.3	28
15	Two isoforms of cyclic GMP-dependent kinase-I exhibit distinct expression patterns in the adult mouse dorsal root ganglion. Molecular Pain, 2018, 14, 174480691879640.	2.1	5
16	Real-Time Imaging Reveals Augmentation of Glutamate-Induced Ca2+ Transients by the NO-cGMP Pathway in Cerebellar Granule Neurons. International Journal of Molecular Sciences, 2018, 19, 2185.	4.1	4
17	Establishing a Split Luciferase Assay for Proteinkinase G (PKG) Interaction Studies. International Journal of Molecular Sciences, 2018, 19, 1180.	4.1	4
18	Inhibition of the <scp>TGF</scp> β signalling pathway by <scp>cGMP</scp> and <scp>cGMP</scp> â€dependent kinase I in renal fibrosis. FEBS Open Bio, 2017, 7, 550-561.	2.3	27

#	Article	IF	Citations
19	Differences in the renal antifibrotic cGMP/cGKI-dependent signaling of serelaxin, zaprinast, and their combination. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 939-948.	3.0	5
20	Antimicrobial and Hemolytic Studies of a Series of Polycations Bearing Quaternary Ammonium Moieties: Structural and Topological Effects. International Journal of Molecular Sciences, 2017, 18, 303.	4.1	19
21	Involvement of Cyclic Guanosine Monophosphate-Dependent Protein Kinase I in Renal Antifibrotic Effects of Serelaxin. Frontiers in Pharmacology, 2016, 7, 195.	3.5	14
22	Iron deficiency anemia in cyclic GMP kinase knockout mice. Haematologica, 2016, 101, e48-e51.	3.5	11
23	Regulation of the Na ⁺ â€K ⁺ â€2Cl ^{â°'} cotransporter by c <scp>GMP</scp> /c <scp>GMP</scp> â€dependent protein kinase I after furosemide administration. FEBS Journal, 2015, 282, 3786-3798.	4.7	10
24	Interaction of cCMP with the cGK, cAK and MAPK kinases in murine tissues. BMC Pharmacology & amp; Toxicology, 2015, 16 , .	2.4	0
25	Interaction of cCMP with the cGK, cAK and MAPK Kinases in Murine Tissues. PLoS ONE, 2015, 10, e0126057.	2.5	9
26	Identification of cCMP and cUMP Substrate Proteins and Cross Talk Between cNMPs. Handbook of Experimental Pharmacology, 2015, 238, 149-167.	1.8	2
27	Renal effects of soluble guanylate cyclase stimulators and activators: A review of the preclinical evidence. Current Opinion in Pharmacology, 2015, 21, 95-104.	3.5	93
28	Cyclic Nucleotide Signalling in Kidney Fibrosis. International Journal of Molecular Sciences, 2015, 16, 2320-2351.	4.1	45
29	IL-3 contributes to development of lupus nephritis in MRL/Ipr mice. Kidney International, 2015, 88, 1088-1098.	5.2	33
30	Function of cGMP-dependent protein kinase II in volume load-induced diuresis. Pflugers Archiv European Journal of Physiology, 2014, 466, 2009-2018.	2.8	8
31	Roles of cGMP-dependent protein kinase I (cGKI) and PDE5 in the regulation of Ang II-induced cardiac hypertrophy and fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12925-12929.	7.1	62
32	Identification of cCMP binding and activated proteins. BMC Pharmacology $\&$ amp; Toxicology, 2013, 14, .	2.4	0
33	Methods for Identification of cGKI Substrates. Methods in Molecular Biology, 2013, 1020, 147-162.	0.9	2
34	Editorial of the Special Issue: Signaling Molecules and Signal Transduction in Cells. International Journal of Molecular Sciences, 2013, 14, 11438-11443.	4.1	1
35	cGMP-Dependent Protein Kinase Inhibitors in Health and Disease. Pharmaceuticals, 2013, 6, 269-286.	3.8	29
36	Atrial Natriuretic Peptide–Mediated Inhibition of Microcirculatory Endothelial Ca ²⁺ and Permeability Response to Histamine Involves cGMP-Dependent Protein Kinase I and TRPC6 Channels. Arteriosclerosis, Thrombosis, and Vascular Biology, 2013, 33, 2121-2129.	2.4	39

#	Article	IF	Citations
37	The cyclic GMP–dependent protein kinase lα suppresses kidney fibrosis. Kidney International, 2013, 84, 1198-1206.	5.2	28
38	cGMP-Prkg1 signaling and Pde5 inhibition shelter cochlear hair cells and hearing function. Nature Medicine, 2012, 18, 252-259.	30.7	82
39	cGMP becomes a drug target. Naunyn-Schmiedeberg's Archives of Pharmacology, 2012, 385, 243-252.	3.0	33
40	Presynaptically Localized Cyclic GMP-Dependent Protein Kinase 1 Is a Key Determinant of Spinal Synaptic Potentiation and Pain Hypersensitivity. PLoS Biology, 2012, 10, e1001283.	5.6	82
41	Kinetics of relaxation by cGMP/cGKI signaling in fundus smooth muscle. European Journal of Pharmacology, 2011, 670, 266-271.	3.5	3
42	Signaling via IRAG is essential for NO/cGMP-dependent inhibition of platelet activation. Platelets, 2011, 22, 217-227.	2.3	27
43	Truncated IRAG variants modulate cGMP-mediated inhibition of human colonic smooth muscle cell contraction. American Journal of Physiology - Cell Physiology, 2011, 301, C1445-C1457.	4.6	10
44	IRAG and novel PKG targeting in the cardiovascular system. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H672-H682.	3.2	43
45	Cyclic cytidine 3′,5′â€monophosphate (cCMP) signals via cGMP kinase I. FEBS Letters, 2010, 584, 3979-39.	84.8	40
46	IRAG determines nitric oxide- and atrial natriuretic peptide-mediated smooth muscle relaxation. Cardiovascular Research, 2010, 86, 496-505.	3.8	60
47	Cytidylyl and Uridylyl Cyclase Activity of <i>Bacillus anthracis</i> Edema Factor and <i>Bordetella pertussis</i> CyaA. Biochemistry, 2010, 49, 5494-5503.	2.5	59
48	Calcium-dependent and calcium-independent inhibition of contraction by cGMP/cGKI in intestinal smooth muscle. American Journal of Physiology - Renal Physiology, 2009, 297, G834-G839.	3.4	17
49	The role of cGMP-cGKI-signaling for duodenal bicarbonate secretion. BMC Pharmacology, 2009, 9, .	0.4	1
50	Rescue of cGMP kinase I and the cause of premature death. BMC Pharmacology, 2009, 9, .	0.4	0
51	cGK Substrates. Handbook of Experimental Pharmacology, 2009, , 163-193.	1.8	41
52	cGMP Produced by NO-Sensitive Guanylyl Cyclase Essentially Contributes to Inflammatory and Neuropathic Pain by Using Targets Different from cGMP-Dependent Protein Kinase I. Journal of Neuroscience, 2008, 28, 8568-8576.	3.6	94
53	Rescue of cGMP Kinase I Knockout Mice by Smooth Muscle–Specific Expression of Either Isozyme. Circulation Research, 2007, 101, 1096-1103.	4.5	98
54	Reduced rather than enhanced cholinergic airway constriction in mice with ablation of the large conductance Ca 2+ â€activated K + channel. FASEB Journal, 2007, 21, 812-822.	0.5	40

#	Article	IF	CITATIONS
55	IRAG mediates NO/cGMP-dependent inhibition of platelet aggregation and thrombus formation. Blood, 2007, 109, 552-559.	1.4	139
56	Relaxation of vascular smooth muscle by the cGMP-kinase substrate IRAG. BMC Pharmacology, 2007, 7, .	0.4	0
57	Function of cGMP-Dependent Protein Kinases as Revealed by Gene Deletion. Physiological Reviews, 2006, 86, 1-23.	28.8	384
58	cGMP-dependent protein kinases in drug discovery. Drug Discovery Today, 2005, 10, 627-634.	6.4	69
59	IRAG is involved in NO/cGMP-mediated inhibition of platelet function. BMC Pharmacology, 2005, 5, P2.	0.4	1
60	IRAG is involved in cGMP/cGK-mediated relaxation of contractions induced by calcium entry. BMC Pharmacology, 2005, 5, P60.	0.4	0
61	Insights into cGMP signalling derived from cGMP kinase knockout mice. Frontiers in Bioscience - Landmark, 2005, 10, 1279.	3.0	59
62	Neutrophil Dysfunction in Guanosine 3′,5′-Cyclic Monophosphate-Dependent Protein Kinase I-Deficient Mice. Journal of Immunology, 2005, 175, 1919-1929.	0.8	16
63	Distribution of cGMP-dependent protein kinase type I and its isoforms in the mouse brain and retina. Neuroscience, 2005, 135, 863-868.	2.3	69
64	InsP3R-associated cGMP Kinase Substrate (IRAG) Is Essential for Nitric Oxide-induced Inhibition of Calcium Signaling in Human Colonic Smooth Muscle. Journal of Biological Chemistry, 2004, 279, 12551-12559.	3.4	42
65	IRAG is essential for relaxation of receptor-triggered smooth muscle contraction by cGMP kinase. EMBO Journal, 2004, 23, 4222-4231.	7.8	130
66	Distribution of IRAG and cGKI-isoforms in murine tissues. FEBS Letters, 2004, 575, 19-22.	2.8	98
67	Association of phospholamban with a cGMP kinase signaling complex. Biochemical and Biophysical Research Communications, 2003, 300, 155-160.	2.1	54
68	Signaling through NO and cGMPâ€dependent protein kinases. Annals of Medicine, 2003, 35, 21-27.	3.8	156
69	Gastrointestinal dysfunction mediated by an IRAG mutation in mice. BMC News and Views, 2003, 3, .	0.0	0
70	Phosphorylation of the cGMP kinase substrate IRAG in platelets. BMC News and Views, 2003, 3, .	0.0	1
71	Functional Reconstitution of Vascular Smooth Muscle Cells With cGMP-Dependent Protein Kinase I Isoforms. Circulation Research, 2002, 90, 1080-1086.	4.5	115
72	Molecular Determinants of the Interaction between the Inositol 1,4,5-Trisphosphate Receptor-associated cGMP Kinase Substrate (IRAG) and cGMP Kinase Iβ. Journal of Biological Chemistry, 2001, 276, 24153-24159.	3.4	124

#	ARTICLE	IF	CITATIONS
73	Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase $\hat{\mathbb{I}}^2$. Nature, 2000, 404, 197-201.	27.8	438
74	Properties of a new calcium-permeable single channel from tracheal microsomes. Biochimica Et Biophysica Acta - Biomembranes, 1999, 1417, 25-31.	2.6	1
75	Regulation of stably expressed and native BK channels from human myometrium by cGMP- and cAMP-dependent protein kinase. Pflugers Archiv European Journal of Physiology, 1998, 436, 725-734.	2.8	40
76	Protein Phosphatase 2A Is Essential for the Activation of Ca2+-activated K+ Currents by cGMP-dependent Protein Kinase in Tracheal Smooth Muscle and Chinese Hamster Ovary Cells. Journal of Biological Chemistry, 1996, 271, 19760-19767.	3.4	120
77	Tom71, a Novel Homologue of the Mitochondrial Preprotein Receptor Tom70. Journal of Biological Chemistry, 1996, 271, 17890-17895.	3.4	82
78	Assembly of the Preprotein Receptor MOM72/MAS70 into the Protein Import Complex of the Outer Membrane of Mitochondria. Journal of Biological Chemistry, 1995, 270, 27116-27121.	3.4	38
79	Mapping of the protein import machinery in the mitochondrial outer membrane by crosslinking of translocation intermediates. Nature, 1992, 355, 84-87.	27.8	196