
Anthony J Donato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3616008/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aging and vascular endothelial function in humans. Clinical Science, 2011, 120, 357-375.	1.8	531
2	Mechanisms of Vascular Aging. Circulation Research, 2018, 123, 849-867.	2.0	512
3	Direct Evidence of Endothelial Oxidative Stress With Aging in Humans. Circulation Research, 2007, 100, 1659-1666.	2.0	490
4	Cellular and molecular biology of aging endothelial cells. Journal of Molecular and Cellular Cardiology, 2015, 89, 122-135.	0.9	367
5	Mechanisms of Dysfunction in the Aging Vasculature and Role in Age-Related Disease. Circulation Research, 2018, 123, 825-848.	2.0	344
6	Habitual exercise and arterial aging. Journal of Applied Physiology, 2008, 105, 1323-1332.	1.2	300
7	Vascular endothelial dysfunction with aging: endothelin-1 and endothelial nitric oxide synthase. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H425-H432.	1.5	250
8	Aging is associated with greater nuclear NFκB, reduced lκBα, and increased expression of proinflammatory cytokines in vascular endothelial cells of healthy humans. Aging Cell, 2008, 7, 805-812.	3.0	213
9	SIRTâ€l and vascular endothelial dysfunction with ageing in mice and humans. Journal of Physiology, 2011, 589, 4545-4554.	1.3	211
10	Voluntary wheel running restores endothelial function in conduit arteries of old mice: direct evidence for reduced oxidative stress, increased superoxide dismutase activity and downâ€regulation of NADPH oxidase. Journal of Physiology, 2009, 587, 3271-3285.	1.3	196
11	Overweight and Obese Humans Demonstrate Increased Vascular Endothelial NAD(P)H Oxidase-p47phoxExpression and Evidence of Endothelial Oxidative Stress. Circulation, 2007, 115, 627-637.	1.6	186
12	Effects of ageing and exercise training on endothelium-dependent vasodilatation and structure of rat skeletal muscle arterioles. Journal of Physiology, 2004, 556, 947-958.	1.3	173
13	Endothelial cell senescence with aging in healthy humans: prevention by habitual exercise and relation to vascular endothelial function. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H890-H895.	1.5	160
14	Weight Loss Alone Improves Conduit and Resistance Artery Endothelial Function in Young and Older Overweight/Obese Adults. Hypertension, 2008, 52, 72-79.	1.3	147
15	Life-long caloric restriction reduces oxidative stress and preserves nitric oxide bioavailability and function in arteries of old mice. Aging Cell, 2013, 12, 772-783.	3.0	146
16	The SIRT1 activator SRT1720 reverses vascular endothelial dysfunction, excessive superoxide production, and inflammation with aging in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1754-H1763.	1.5	144
17	Shortâ€ŧerm calorie restriction reverses vascular endothelial dysfunction in old mice by increasing nitric oxide and reducing oxidative stress. Aging Cell, 2010, 9, 304-312.	3.0	131
18	Dietary rapamycin supplementation reverses ageâ€related vascular dysfunction and oxidative stress, while modulating nutrientâ€sensing, cell cycle, and senescence pathways. Aging Cell, 2017, 16, 17-26.	3.0	123

#	Article	IF	CITATIONS
19	Aerobic exercise reverses arterial inflammation with aging in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1025-H1032.	1.5	103
20	Basal leg blood flow in healthy women is related to age and hormone replacement therapy status. Journal of Physiology, 2003, 547, 309-316.	1.3	92
21	Age-related telomere uncapping is associated with cellular senescence and inflammation independent of telomere shortening in human arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 305, H251-H258.	1.5	90
22	Critical Role for Telomerase in the Mechanism of Flow-Mediated Dilation in the Human Microcirculation. Circulation Research, 2016, 118, 856-866.	2.0	88
23	A Focused DNA-Encoded Chemical Library for the Discovery of Inhibitors of NAD ⁺ -Dependent Enzymes. Journal of the American Chemical Society, 2019, 141, 5169-5181.	6.6	84
24	Advanced age results in a diminished endothelial glycocalyx. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H531-H539.	1.5	79
25	Exercise-induced brachial artery vasodilation: effects of antioxidants and exercise training in elderly men. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H671-H678.	1.5	77
26	Ageing and exercise training alter adrenergic vasomotor responses of rat skeletal muscle arterioles. Journal of Physiology, 2007, 579, 115-125.	1.3	75
27	B6D2F1 Mice Are a Suitable Model of Oxidative Stress-Mediated Impaired Endothelium-Dependent Dilation With Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2009, 64A, 9-20.	1.7	71
28	The effects of aging and exercise training on endothelin-1 vasoconstrictor responses in rat skeletal muscle arterioles. Cardiovascular Research, 2005, 66, 393-401.	1.8	69
29	Life-long caloric restriction elicits pronounced protection of the aged myocardium: A role for AMPK. Mechanisms of Ageing and Development, 2010, 131, 739-742.	2.2	67
30	Dietary Vitamin D and Its Metabolites Non-Genomically Stabilize the Endothelium. PLoS ONE, 2015, 10, e0140370.	1.1	63
31	Salicylate Treatment Improves Age-Associated Vascular Endothelial Dysfunction: Potential Role of Nuclear Factor ÂB and Forkhead Box O Phosphorylation. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2011, 66A, 409-418.	1.7	59
32	Mitochondrial Oxidative Phosphorylation defect in the Heart of Subjects with Coronary Artery Disease. Scientific Reports, 2019, 9, 7623.	1.6	59
33	Role of NFκB in age-related vascular endothelial dysfunction in humans. Aging, 2009, 1, 678-680.	1.4	59
34	Role of arterial telomere dysfunction in hypertension. Journal of Hypertension, 2014, 32, 1293-1299.	0.3	58
35	The impact of ageing on adipose structure, function and vasculature in the B6D2F1 mouse: evidence of significant multisystem dysfunction. Journal of Physiology, 2014, 592, 4083-4096.	1.3	54
36	Sustained activation of AMPK ameliorates age-associated vascular endothelial dysfunction via a nitric oxide-independent mechanism. Mechanisms of Ageing and Development, 2012, 133, 368-371.	2.2	51

#	Article	IF	CITATIONS
37	The role of senescence, telomere dysfunction and shelterin in vascular aging. Microcirculation, 2019, 26, e12487.	1.0	51
38	TNF-α impairs endothelial function in adipose tissue resistance arteries of mice with diet-induced obesity. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 303, H672-H679.	1.5	46
39	The role of the endothelial glycocalyx in advanced age and cardiovascular disease. Current Opinion in Pharmacology, 2019, 45, 66-71.	1.7	46
40	Vascular Endothelial Function Is Related to White Blood Cell Count and Myeloperoxidase Among Healthy Middle-Aged and Older Adults. Hypertension, 2010, 55, 363-369.	1.3	41
41	Endothelin-AÂ-Mediated Vasoconstriction During Exercise With Advancing Age. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 554-565.	1.7	40
42	Greater impairments in cerebral artery compared with skeletal muscle feed artery endothelial function in a mouse model of increased large artery stiffness. Journal of Physiology, 2015, 593, 1931-1943.	1.3	38
43	Systemic sclerosis induces pronounced peripheral vascular dysfunction characterized by blunted peripheral vasoreactivity and endothelial dysfunction. Clinical Rheumatology, 2015, 34, 905-913.	1.0	33
44	Telomere uncapping and vascular aging. American Journal of Physiology - Heart and Circulatory Physiology, 2018, 315, H1-H5.	1.5	32
45	Beneficial effects of lifelong caloric restriction on endothelial function are greater in conduit arteries compared to cerebral resistance arteries. Age, 2014, 36, 559-569.	3.0	31
46	Lifelong SIRT-1 overexpression attenuates large artery stiffening with advancing age. Aging, 2020, 12, 11314-11324.	1.4	27
47	Automated Measurement of Microvascular Function Reveals Dysfunction in Systemic Sclerosis: A Cross-sectional Study. Journal of Rheumatology, 2017, 44, 1603-1611.	1.0	26
48	Age-related arterial immune cell infiltration in mice is attenuated by caloric restriction or voluntary exercise. Experimental Gerontology, 2018, 109, 99-107.	1.2	26
49	Induced Trf2 deletion leads to aging vascular phenotype in mice associated with arterial telomere uncapping, senescence signaling, and oxidative stress. Journal of Molecular and Cellular Cardiology, 2019, 127, 74-82.	0.9	24
50	Cytochrome P-450 2C9 signaling does not contribute to age-associated vascular endothelial dysfunction in humans. Journal of Applied Physiology, 2008, 105, 1359-1363.	1.2	23
51	Experimental reduction of miR-92a mimics arterial aging. Experimental Gerontology, 2016, 83, 165-170.	1.2	23
52	Dichotomous mechanisms of aortic stiffening in high-fat diet fed young and old B6D2F1 mice. Physiological Reports, 2014, 2, e00268.	0.7	21
53	Smooth muscle specific disruption of the endothelin-A receptor in mice reduces arterial pressure, and vascular reactivity and affects vascular development. Life Sciences, 2014, 118, 238-243.	2.0	20
54	Exercise training reverses aging-induced impairment of myogenic constriction in skeletal muscle arterioles. Journal of Applied Physiology, 2015, 118, 904-911.	1.2	19

#	Article	IF	CITATIONS
55	Is It Good to Have a Stiff Aorta with Aging? Causes and Consequences. Physiology, 2022, 37, 154-173.	1.6	16
56	T lymphocyte depletion ameliorates age-related metabolic impairments in mice. GeroScience, 2021, 43, 1331-1347.	2.1	15
57	Cerebral and skeletal muscle feed artery vasoconstrictor responses in a mouse model with greater large elastic artery stiffness. Experimental Physiology, 2019, 104, 434-442.	0.9	13
58	Age-related arterial telomere uncapping and senescence is greater in women compared with men. Experimental Gerontology, 2016, 73, 65-71.	1.2	12
59	Aging differentially impacts vasodilation and angiogenesis in arteries from the white and brown adipose tissues. Experimental Gerontology, 2020, 142, 111126.	1.2	12
60	Exercise-induced brachial artery blood flow and vascular function is impaired in systemic sclerosis. American Journal of Physiology - Heart and Circulatory Physiology, 2016, 311, H1375-H1381.	1.5	11
61	Cerebrovascular dysfunction following subfailure axial stretch. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 65, 627-633.	1.5	10
62	Selected life-extending interventions reduce arterial CXCL10 and macrophage colony-stimulating factor in aged mouse arteries. Cytokine, 2017, 96, 102-106.	1.4	9
63	The pro-atherogenic response to disturbed blood flow is increased by a western diet, but not by old age. Scientific Reports, 2019, 9, 2925.	1.6	9
64	T cells mediate cell nonâ€autonomous arterial ageing in mice. Journal of Physiology, 2021, 599, 3973-3991.	1.3	9
65	Impact of high-fat diet on vasoconstrictor reactivity of white and brown adipose tissue resistance arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H485-H494.	1.5	8
66	Ultrasound Assessment of Flow-Mediated Dilation of the Brachial and Superficial Femoral Arteries in Rats. Journal of Visualized Experiments, 2016, , .	0.2	7
67	Dietary Glycocalyx Precursor Supplementation Ameliorates Ageâ€Related Vascular Dysfunction. FASEB Journal, 2019, 33, 828.1.	0.2	7
68	Acute oral tetrahydrobiopterin administration ameliorates endothelial dysfunction in systemic sclerosis. Clinical and Experimental Rheumatology, 2017, 35 Suppl 106, 167-172.	0.4	6
69	Differential Telomere Shortening in Blood versus Arteries in an Animal Model of Type 2 Diabetes. Journal of Diabetes Research, 2015, 2015, 1-9.	1.0	5
70	Age-Associated ALU Element Instability in White Blood Cells Is Linked to Lower Survival in Elderly Adults: A Preliminary Cohort Study. PLoS ONE, 2017, 12, e0169628.	1.1	5
71	Attenuated nitric oxide bioavailability in systemic sclerosis: Evidence from the novel assessment of passive leg movement. Experimental Physiology, 2018, 103, 1412-1424.	0.9	4
72	Deletion of Robo4 prevents highâ€fat dietâ€induced adipose artery and systemic metabolic dysfunction. Microcirculation, 2019, 26, e12540.	1.0	4

#	Article	IF	CITATIONS
73	Implications of endothelial shear stress on systemic sclerosis vasculopathy and treatment. Clinical and Experimental Rheumatology, 2018, 36 Suppl 113, 175-182.	0.4	3
74	Dietary rapamycin selectively improves arterial function in old mice. FASEB Journal, 2013, 27, 1194.17.	0.2	2
75	Telomere uncapping causes cellular senescence and inflammation in arteries: implications for arterial aging. FASEB Journal, 2013, 27, 1131.1.	0.2	2
76	Tetrahydrobiopterin Administration Augments Exercise-Induced Hyperemia and Endothelial Function in Patients With Systemic Sclerosis. Frontiers in Medicine, 2021, 8, 791689.	1.2	2
77	Ageing and vascular adrenoceptor desensitization: too little, too late?. Journal of Physiology, 2007, 582, 9-10.	1.3	1
78	Senolytic Drugs, Dasatinib and Quercetin, Attenuate Adipose Tissue T Lymphocyte Infiltration and Improve Metabolic Function in Old Mice. FASEB Journal, 2021, 35, .	0.2	1
79	Ageâ€related impairment in endotheliumâ€dependent dilation is related to diminished sirT deacetlylase expression and increased eNOS acetylation. FASEB Journal, 2010, 24, 1039.2.	0.2	1
80	Treatment with the SIRT1 activator SRT1720 reduces large elastic artery stiffness, superoxide production and inflammation in old mice. FASEB Journal, 2011, 25, lb485.	0.2	1
81	Aortic stiffening as a result of reduced elastin content leads to cerebral artery dysfunction. FASEB Journal, 2013, 27, 1194.3.	0.2	1
82	Ageâ€Related Telomere Uncapping Occurs Independent of Telomere Shortening in Mouse Endothelial Cells. FASEB Journal, 2015, 29, 642.1.	0.2	1
83	Sirt1 overexpression attenuates Westernâ€style dietâ€induced aortic stiffening in mice. Physiological Reports, 2022, 10, e15284.	0.7	1
84	Aging results in endothelial cell telomere uncapping that induces senescence and physiological dysfunction. FASEB Journal, 2022, 36, .	0.2	1
85	Telomere uncapping as a possible mechanism for chemotherapyâ€induced vascular toxicity. FASEB Journal, 2021, 35, .	0.2	0
86	Novel Method to Observe Endothelial Cell Telomere Dynamics in Regions Exposed to Lifelong Disturbed Flow in Murine Aorta. FASEB Journal, 2021, 35, .	0.2	0
87	Ageâ€related impaired endotheliumâ€dependent dilation is associated with increased vascular endothelial cell protein expression of NFâ€kB in humans. FASEB Journal, 2006, 20, A721.	0.2	0
88	MECHANISM OF ANGIOTENSIN II VASOREACTIVITY IN RAT SOLEUS MUSCLE ARTERIOLES: EFFECTS OF AGING AND EXERCISE TRAINING. FASEB Journal, 2006, 20, A285.	0.2	0
89	Reduced Endotheliumâ€Dependent Dilation with Aging in Humans is Associated with Endothelial Oxidative Stress and Enhanced Expression of NADPH Oxidase. FASEB Journal, 2007, 21, A1372.	0.2	0
90	Oxidative stress contributes to the age related decline in basal leg blood flow in sedentary men. FASEB Journal, 2007, 21, A1238.	0.2	0

#	Article	IF	CITATIONS
91	Ageâ€Associated Reductions in Endotheliumâ€Dependent Dilation in Humans are Related to Increases in Vascular Endothelial Protein Expression of Endothelinâ€1. FASEB Journal, 2007, 21, A1237.	0.2	Ο
92	Enhanced vascular endotheliumâ€dependent dilation in older men who exercise is associated with markedly lower endothelial oxidative stress. FASEB Journal, 2007, 21, A932.	0.2	0
93	Plasma lowâ€density lipoprotein cholesterol modulates vascular endothelial function as well as systemic and vascular endothelial oxidative stress in middleâ€aged and older men. FASEB Journal, 2007, 21, A445.	0.2	0
94	Vascular Endothelial Dysfunction with Aging in Healthy Adults is Related to Total White Blood Cell Count and Selective Immune Cell Populations. FASEB Journal, 2008, 22, 967.13.	0.2	0
95	Increased Cytochrome P450 2C9 signaling does not contribute to vascular endothelial dysfunction in healthy older adults. FASEB Journal, 2008, 22, 967.1.	0.2	Ο
96	Inflammatory Circulating Mononuclear Cell Phenotype in Healthy Older Adults with Lowâ€Grade Systemic Inflammation and Endothelial Dysfunction. FASEB Journal, 2008, 22, 1155.4.	0.2	0
97	Weight Lossâ€Associated Improvements in Vascular Endothelial Function in Overweight/Obese Humans are Related to Reductions in Abdominal Visceral Fat. FASEB Journal, 2008, 22, 743.1.	0.2	Ο
98	Ageâ€Related Vascular Endothelial Dysfunction is Associated with Altered Regulation of Nuclear Factor k B and Increased Proâ€Inflammatory Cytokines in Humans. FASEB Journal, 2008, 22, 964.12.	0.2	0
99	Voluntary aerobic exercise abolishes ageâ€associated arterial stiffening in mice: relation to collagen subtype expression in the medial and adventitial layers. FASEB Journal, 2009, 23, 774.13.	0.2	Ο
100	Reduction in mononuclear cell mRNA expression of proâ€inflammatory and proâ€oxidant genes with habitual aerobic exercise in older humans. FASEB Journal, 2009, 23, 776.8.	0.2	0
101	Aortic microRNA expression is altered with aging in mice. FASEB Journal, 2009, 23, 776.1.	0.2	Ο
102	Sedentary Aging is Associated with a Senescent Endothelial Cell Phenotype that is Ameliorated by Habitual Aerobic Exercise. FASEB Journal, 2009, 23, 965.15.	0.2	0
103	Shortâ€ŧerm Caloric Restriction Improves Glucose Tolerance in Older Mice Independent of Changes in SIRTâ€1. FASEB Journal, 2009, 23, 990.33.	0.2	0
104	Voluntary wheel running abolishes vascular inflammation and restores endothelial function in old mice. FASEB Journal, 2009, 23, 777.6.	0.2	0
105	MicroRNA expression with "aging―in human aortic endothelial cells. FASEB Journal, 2010, 24, 626.7.	0.2	0
106	Shortâ€ŧerm AMPK activation improves vascular endothelial function in old mice by a different mechanism than habitual aerobic exercise. FASEB Journal, 2010, 24, 619.9.	0.2	0
107	Lifeâ€long caloric restriction confers pronounced AMPKâ€dependent cardioprotection. FASEB Journal, 2010, 24, .	0.2	0
108	Voluntary running and caloric restriction reverse cerebrovascular endothelial dysfunction in old mice by restoring nitric oxide bioavailability. FASEB Journal, 2011, 25, 1108.16.	0.2	0

#	Article	IF	CITATIONS
109	Increased TRF2 binding likely limits telomere uncapping in older human arteries despite ageâ€related telomere attrition. FASEB Journal, 2012, 26, 865.10.	0.2	0
110	Whole body C bl Associated Protein (CAP) deleted mice display impaired endothelium dependent dilation and nitric oxide bioavailability. FASEB Journal, 2012, 26, 1129.12.	0.2	0
111	Blunting of Endothelium Dependent Dilation in Adipose Tissue Arteries by Tumor Necrosis Factor Alpha is Lost after High Fat Feeding. FASEB Journal, 2012, 26, 680.17.	0.2	0
112	Evidence of the regulatory potential of human skeletal muscle feed arteries. FASEB Journal, 2012, 26, 1138.29.	0.2	0
113	Reduced large elastic artery stiffness in older exercising adults is associated with suppressed nuclear factor kappa B signaling. FASEB Journal, 2012, 26, 1138.10.	0.2	0
114	SIRT1 Activation with SRT1720 Reverses Impaired Endotheliumâ€Dependent Dilation in Old Mice by Augmenting COXâ€2 Mediated Vasodilation. FASEB Journal, 2012, 26, lb661.	0.2	0
115	Smaller cerebrovascular arteries have a greater ageâ€related endothelial dysfunction and a blunted response to lifeâ€long caloric restriction. FASEB Journal, 2012, 26, 685.31.	0.2	0
116	Endotheliumâ€dependent dilation is inversely related to hematocrit among healthy young and older adults. FASEB Journal, 2012, 26, 865.13.	0.2	0
117	Morphological Changes Underlying High Fat Dietâ€Associated Arterial Stiffening Differ with Advancing Age. FASEB Journal, 2013, 27, 1194.16.	0.2	0
118	SIRT1 overexpression protects against high fat dietâ€induced cerebral artery endothelial dysfunction (1070.10). FASEB Journal, 2014, 28, 1070.10.	0.2	0
119	Partial Carotid Ligation Impairs Middle Cerebral Artery Endothelial Function in Old Mice. FASEB Journal, 2015, 29, 949.1.	0.2	0
120	Endothelial ARF6 deletion impairs insulinâ€induced dilation of adipose arteries and systemic glucose tolerance. FASEB Journal, 2015, 29, 802.1.	0.2	0
121	Inhibition of MiRâ€92 Mimics Arterial Aging. FASEB Journal, 2015, 29, 1047.3.	0.2	0
122	Aging is associated with reduced vasodilation to insulin in subcutaneous adipose arteries in B6D2F1 mice. FASEB Journal, 2015, 29, 1044.5.	0.2	0
123	The Impact of Acute Tetrahydrobiopterin Administration on Plasma Adropin Concentration in Patients with Systemic Sclerosis. FASEB Journal, 2018, 32, 902.20.	0.2	0
124	Deletion of miRâ€92a Results in Glucose Intolerance via Impaired Pancreatic Beta Cell Function. FASEB Journal, 2019, 33, 714.2.	0.2	0
125	Aged endothelial cells exhibit a metabolic shift from anaerobic glycolysis to oxidative phosphorylation. FASEB Journal, 2019, 33, 693.14.	0.2	0
126	Genetic deletion of the DNA damage repair protein, ATM kinase, is not sufficient to induce vascular dysfunction in young mice. FASEB Journal, 2019, 33, .	0.2	0

#	Article	IF	CITATIONS
127	Ablation of Endothelial mTOR is Benign in Young Mice and Reverses Ageâ€Related Arterial and Metabolic Impairments in Old Mice. FASEB Journal, 2022, 36, .	0.2	0