Zhonghong Gao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3613874/publications.pdf

Version: 2024-02-01

46 855 16
papers citations h-index

46 1001 times ranked citing authors

27

g-index

46 all docs 46 docs citations

#	Article	lF	CITATIONS
1	The nature of heme/iron-induced protein tyrosine nitration. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5712-5717.	7.1	177
2	Aβ Interacts with Both the Iron Center and the Porphyrin Ring of Heme: Mechanism of Heme's Action on Aβ Aggregation and Disaggregation. Chemical Research in Toxicology, 2013, 26, 262-269.	3.3	44
3	Synthesis of a CdS-decorated Eu-MOF nanocomposite for the construction of a self-powered photoelectrochemical aptasensor. Analyst, The, 2019, 144, 6617-6624.	3.5	37
4	Amyloid beta–heme peroxidase promoted protein nitrotyrosination: relevance to widespread protein nitration in Alzheimer's disease. Journal of Biological Inorganic Chemistry, 2012, 17, 197-207.	2.6	35
5	Near-Infrared Light-Induced Self-Powered Aptasensing Platform for Aflatoxin B1 Based on Upconversion Nanoparticles-Doped Bi ₂ 5 ₃ Nanorods. Analytical Chemistry, 2021, 93, 677-682.	6.5	35
6	TDMQ20, a Specific Copper Chelator, Reduces Memory Impairments in Alzheimer's Disease Mouse Models. ACS Chemical Neuroscience, 2021, 12, 140-149.	3.5	26
7	Nitration of Y10 in \hat{Al}^2 (sub>1 \hat{a} \hat{b} (40: Is It a Compensatory Reaction against Oxidative/Nitrative Stress and \hat{Al}^2 Aggregation?. Chemical Research in Toxicology, 2015, 28, 401-407.	3.3	23
8	Hemin–H2O2–NO2â~' induced protein oxidation and tyrosine nitration are different from those of SIN-1: A study on glutamate dehydrogenase nitrative/oxidative modification. International Journal of Biochemistry and Cell Biology, 2009, 41, 907-915.	2.8	22
9	Poly(tannic acid) nanocoating based surface modification for construction of multifunctional composite CeO ₂ NZs to enhance cell proliferation and antioxidative viability of preosteoblasts. Nanoscale, 2021, 13, 16349-16361.	5.6	22
10	Nitrative and oxidative modifications of enolase are associated with iron in iron-overload rats and in vitro. Journal of Biological Inorganic Chemistry, 2011, 16, 481-490.	2.6	21
11	Insulin enhances the peroxidase activity of heme by forming heme-insulin complex: Relevance to type 2 diabetes mellitus. International Journal of Biological Macromolecules, 2017, 102, 1009-1015.	7.5	21
12	Ferric citrate CYP2E1-independently promotes alcohol-induced apoptosis in HepG2 cells via oxidative/nitrative stress which is attenuated by pretreatment with baicalin. Food and Chemical Toxicology, 2012, 50, 3264-3272.	3.6	20
13	Molecular extraction in single live cells by sneaking in and out magnetic nanomaterials. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10966-10971.	7.1	20
14	Nitrite–glucose–glucose oxidase system directly induces rat heart homogenate oxidation and tyrosine nitration: Effects of some flavonoids. Toxicology in Vitro, 2009, 23, 627-633.	2.4	19
15	Association of cardiac injury with iron-increased oxidative and nitrative modifications of the SERCA2a isoform of sarcoplasmic reticulum Ca2+-ATPase in diabetic rats. Biochimie, 2016, 127, 144-152.	2.6	19
16	Strong Inhibitory Effect of Heme on hIAPP Fibrillation. Chemical Research in Toxicology, 2017, 30, 1711-1719.	3.3	18
17	Nitration of Tyrosine Residue Y10 of AÎ 2 _{1$\hat{a}$$\in$"42} Significantly Inhibits Its Aggregation and Cytotoxicity. Chemical Research in Toxicology, 2017, 30, 1085-1092.	3.3	17
18	Amyloid beta modulated the selectivity of heme-catalyzed protein tyrosine nitration: an alternative mechanism for selective protein nitration. Journal of Biological Inorganic Chemistry, 2012, 17, 1083-1091.	2.6	16

#	Article	IF	CITATIONS
19	Tyrosine residues play an important role in heme detoxification by serum albumin. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 970-976.	2.4	16
20	Efficiency of methemoglobin, hemin and ferric citrate in catalyzing protein tyrosine nitration, protein oxidation and lipid peroxidation in a bovine serum albumin–liposome system: Influence of pH. Journal of Inorganic Biochemistry, 2009, 103, 783-790.	3.5	15
21	Interaction of glyceraldehyde-3-phosphate dehydrogenase and heme: The relevance of its biological function. Archives of Biochemistry and Biophysics, 2017, 619, 54-61.	3.0	15
22	Nitration of hIAPP promotes its toxic oligomer formation and exacerbates its toxicity towards INS-1†cells. Nitric Oxide - Biology and Chemistry, 2019, 87, 23-30.	2.7	15
23	Nitration of amyloid-l̂² peptide (1–42) as a protective mechanism for the amyloid-l̂² peptide (1–42) against copper ion toxicity. Journal of Inorganic Biochemistry, 2019, 190, 15-23.	3.5	15
24	Copper Binding Induces Nitration of NPY under Nitrative Stress: Complicating the Role of NPY in Alzheimer's Disease. Chemical Research in Toxicology, 2018, 31, 904-913.	3.3	14
25	Hemin-catalyzed biomimetic oxidative phenol–indole [3 + 2] reactions in aqueous media. Organic and Biomolecular Chemistry, 2019, 17, 9994-9998.	2.8	14
26	Dual Anti-/Prooxidant Behaviors of Flavonoids Pertaining to Cu(II)-Catalyzed Tyrosine Nitration of the Insulin Receptor Kinase Domain in an Antidiabetic Study. Journal of Agricultural and Food Chemistry, 2020, 68, 6202-6211.	5.2	14
27	Inhibitory activities of flavonoids from Scutellaria baicalensis Georgi on amyloid aggregation related to type 2 diabetes and the possible structural requirements for polyphenol in inhibiting the nucleation phase of hIAPP aggregation. International Journal of Biological Macromolecules, 2022, 215, 531-540.	7.5	12
28	Heme prevents highly amyloidogenic human calcitonin (hCT) aggregation: A potential new strategy for the clinical reuse of hCT. Journal of Inorganic Biochemistry, 2019, 196, 110686.	3.5	11
29	Key roles of Tyr 10 in Cu bound ${\rm A\hat{l}^2}$ complexes and its relevance to Alzheimer's disease. Archives of Biochemistry and Biophysics, 2015, 584, 1-9.	3.0	10
30	Structure effect of water-soluble iron porphyrins on catalyzing protein tyrosine nitration in the presence of nitrite and hydrogen peroxide. Nitric Oxide - Biology and Chemistry, 2019, 91, 42-51.	2.7	10
31	Triosephosphate isomerase tyrosine nitration induced by heme–NaNO ₂ 6€"H ₂ 0 ₂ or peroxynitrite: Effects of different natural phenolic compounds. Journal of Biochemical and Molecular Toxicology, 2017, 31, e21893.	3.0	9
32	NPY binds with heme to form a NPYâ€"heme complex: enhancing peroxidase activity in free heme and promoting NPY nitration and inactivation. Dalton Transactions, 2017, 46, 10315-10323.	3.3	9
33	Study on the detoxification mechanisms to 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrinato iron(III) chloride (FeTPPS), an efficient pro-oxidant of heme water-soluble analogue. Journal of Inorganic Biochemistry, 2018, 189, 40-52.	3.5	9
34	Peroxynitrite scavenger FeTPPS effectively inhibits hIAPP aggregation and protects against amyloid induced cytotoxicity. International Journal of Biological Macromolecules, 2020, 161, 336-344.	7. 5	9
35	Heminâ€Graphene Derivatives with Increased Peroxidase Activities Restrain Protein Tyrosine Nitration. Chemistry - A European Journal, 2017, 23, 17755-17763.	3.3	8
36	Synergistic Interaction of Light Alcohol Administration in the Presence of Mild Iron Overload in a Mouse Model of Liver Injury: Involvement of Triosephosphate Isomerase Nitration and Inactivation. PLoS ONE, 2017, 12, e0170350.	2.5	8

#	Article	IF	CITATIONS
37	Simultaneous recovery of glycyrrhizic acid and liquiritin from Chinese licorice root (<i>Glycyrrhiza) Tj ETQq1 1 0.78 Separation Science and Technology, 2018, 53, 1342-1350.</i>	34314 rgB 2.5	T /Overlock 8
38	5,10,15,20-Tetrakis(4-sulfonatophenyl)porphyrinato iron(III) chloride (FeTPPS), a peroxynitrite decomposition catalyst, catalyzes protein tyrosine nitration in the presence of hydrogen peroxide and nitrite. Journal of Inorganic Biochemistry, 2018, 183, 9-17.	3.5	7
39	Structure relationship of metalloporphyrins in inhibiting the aggregation of hIAPP. International Journal of Biological Macromolecules, 2021, 167, 141-150.	7.5	7
40	Tyrosine residues of bovine serum albumin play an important role in protecting SH-SY5Y cells against heme/H2O2/NO2â^²-induced damage. Molecular and Cellular Biochemistry, 2019, 454, 57-66.	3.1	6
41	Y12 nitration of human calcitonin (hCT): A promising strategy to produce non-aggregation bioactive hCT. Nitric Oxide - Biology and Chemistry, 2020, 104-105, 11-19.	2.7	6
42	Determination of Seven Active Ingredients in Three Plant Essential Oils by Using Micellar Electrokinetic Chromatography. Analytical Letters, 2012, 45, 2014-2025.	1.8	5
43	Insights Into the Mechanism of Tyrosine Nitration in Preventing β-Amyloid Aggregation in Alzheimer's Disease. Frontiers in Molecular Neuroscience, 2021, 14, 619836.	2.9	4
44	Protein tyrosine nitration: Chemistry and role in diseases. Advances in Molecular Toxicology, 2019, , 109-128.	0.4	3
45	The oxidative reactivity of three manganese(III) porphyrin complexes with hydrogen peroxide and nitrite toward catalytic nitration of protein tyrosine. Metallomics, 2021, 13, .	2.4	2
46	Structure and mechanism behind the inhibitory effect of water soluble metalloporphyrins on AÎ21-42 aggregation. Inorganic Chemistry Frontiers, 0, , .	6.0	2