Ruquan Ye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3613718/publications.pdf

Version: 2024-02-01

57758 98798 11,329 69 44 67 citations h-index g-index papers 71 71 71 11791 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Recent Advances in Clusteroluminescence. Topics in Current Chemistry Collections, 2022, , 43-64.	0.5	2
2	Masks for COVIDâ€19. Advanced Science, 2022, 9, e2102189.	11.2	89
3	Recent development of nanomaterials for carbon dioxide electroreduction. SmartMat, 2022, 3, 35-53.	10.7	30
4	Confined Growth of Silver–Copper Janus Nanostructures with {100} Facets for Highly Selective Tandem Electrocatalytic Carbon Dioxide Reduction. Advanced Materials, 2022, 34, e2110607.	21.0	82
5	Transient, Implantable, Ultrathin Biofuel Cells Enabled by Laser-Induced Graphene and Gold Nanoparticles Composite. Nano Letters, 2022, 22, 3447-3456.	9.1	19
6	Molecular Motion and Nonradiative Decay: Towards Efficient Photothermal and Photoacoustic Systems. Angewandte Chemie - International Edition, 2022, 61, .	13.8	88
7	Transient Solidâ€State Laser Activation of Indium for Highâ€Performance Reduction of CO ₂ to Formate. Small, 2022, 18, e2201311.	10.0	22
8	Molecular Motion and Nonradiative Decay: Towards Efficient Photothermal and Photoacoustic Systems. Angewandte Chemie, 2022, 134, .	2.0	9
9	Development of catalysts and electrolyzers toward industrial-scale CO ₂ electroreduction. Journal of Materials Chemistry A, 2022, 10, 19254-19277.	10.3	18
10	Differentiating structure of in situ and ex situ formation of laser-induced graphene hybrids. Rare Metals, 2022, 41, 3035-3044.	7.1	4
11	Shape-Reconfigurable Ferrofluids. Nano Letters, 2022, 22, 5538-5543.	9.1	13
12	Transition metal dichalcogenide-based mixed-dimensional heterostructures for visible-light-driven photocatalysis: Dimensionality and interface engineering. Nano Research, 2021, 14, 2003-2022.	10.4	61
13	Zwitterionic ultrathin covalent organic polymers for high-performance electrocatalytic carbon dioxide reduction. Applied Catalysis B: Environmental, 2021, 284, 119750.	20.2	35
14	MnO ₂ â€Based Materials for Environmental Applications. Advanced Materials, 2021, 33, e2004862.	21.0	252
15	Curvature-induced electronic tuning of molecular catalysts for CO ₂ reduction. Catalysis Science and Technology, 2021, 11, 2491-2496.	4.1	11
16	Highly Efficient and Rapid Inactivation of Coronavirus on Nonâ€Metal Hydrophobic Laserâ€Induced Graphene in Mild Conditions. Advanced Functional Materials, 2021, 31, 2101195.	14.9	47
17	Recent Advances in Clusteroluminescence. Topics in Current Chemistry, 2021, 379, 14.	5 . 8	31
18	Dopantâ€Free Holeâ€Transporting Material with Enhanced Intermolecular Interaction for Efficient and Stable nâ€iâ€p Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2100967.	19.5	51

#	Article	IF	CITATIONS
19	Laserâ€Induced Graphene: Highly Efficient and Rapid Inactivation of Coronavirus on Nonâ€Metal Hydrophobic Laserâ€Induced Graphene in Mild Conditions (Adv. Funct. Mater. 24/2021). Advanced Functional Materials, 2021, 31, 2170175.	14.9	0
20	Recent Progresses in Electrochemical Carbon Dioxide Reduction on Copperâ€Based Catalysts toward Multicarbon Products. Advanced Functional Materials, 2021, 31, 2102151.	14.9	123
21	Laser-induced graphene for environmental applications: progress and opportunities. Materials Chemistry Frontiers, 2021, 5, 4874-4891.	5.9	35
22	Building a stable cationic molecule/electrode interface for highly efficient and durable CO ₂ reduction at an industrially relevant current. Energy and Environmental Science, 2021, 14, 483-492.	30.8	101
23	Molecular Engineering of Laserâ€Induced Graphene for Potentialâ€Driven Broadâ€Spectrum Antimicrobial and Antiviral Applications. Small, 2021, 17, e2102841.	10.0	19
24	Clusterization-triggered emission: Uncommon luminescence from common materials. Materials Today, 2020, 32, 275-292.	14.2	407
25	Tailored self-assembled photocatalytic nanofibres for visible-light-driven hydrogen production. Nature Chemistry, 2020, 12, 1150-1156.	13.6	98
26	Self-Reporting and Photothermally Enhanced Rapid Bacterial Killing on a Laser-Induced Graphene Mask. ACS Nano, 2020, 14, 12045-12053.	14.6	191
27	Laser-Induced Graphene: En Route to Smart Sensing. Nano-Micro Letters, 2020, 12, 157.	27.0	123
28	Laser-Engineered Graphene on Wood Enables Efficient Antibacterial, Anti-Salt-Fouling, and Lipophilic-Matter-Rejection Solar Evaporation. ACS Applied Materials & Interfaces, 2020, 12, 51864-51872.	8.0	64
29	Graphene at Fifteen. ACS Nano, 2019, 13, 10872-10878.	14.6	92
30	Inductive and electrostatic effects on cobalt porphyrins for heterogeneous electrocatalytic carbon dioxide reduction. Catalysis Science and Technology, 2019, 9, 974-980.	4.1	56
31	Covalently Grafting Cobalt Porphyrin onto Carbon Nanotubes for Efficient CO ₂ Electroreduction. Angewandte Chemie, 2019, 131, 6667-6671.	2.0	26
32	Covalently Grafting Cobalt Porphyrin onto Carbon Nanotubes for Efficient CO ₂ Electroreduction. Angewandte Chemie - International Edition, 2019, 58, 6595-6599.	13.8	190
33	Highly Oxidized Graphene Quantum Dots from Coal as Efficient Antioxidants. ACS Applied Materials & Long Representation (2019), 11, 16815-16821.	8.0	61
34	Robust Serum Albumin-Responsive AlEgen Enables Latent Bloodstain Visualization in High Resolution and Reliability for Crime Scene Investigation. ACS Applied Materials & Interfaces, 2019, 11, 17306-17312.	8.0	32
35	In Situ Monitoring Apoptosis Process by a Self-Reporting Photosensitizer. Journal of the American Chemical Society, 2019, 141, 5612-5616.	13.7	196
36	Electronic Tuning of Cobalt Porphyrins Immobilized on Nitrogen-Doped Graphene for CO ₂ Reduction. ACS Applied Energy Materials, 2019, 2, 2435-2440.	5.1	34

#	Article	IF	CITATIONS
37	Laserâ€Induced Graphene: From Discovery to Translation. Advanced Materials, 2019, 31, e1803621.	21.0	512
38	Manganese deception on graphene and implications in catalysis. Carbon, 2018, 132, 623-631.	10.3	54
39	Laser-Induced Graphene by Multiple Lasing: Toward Electronics on Cloth, Paper, and Food. ACS Nano, 2018, 12, 2176-2183.	14.6	607
40	Laser-Induced Conversion of Teflon into Fluorinated Nanodiamonds or Fluorinated Graphene. ACS Nano, 2018, 12, 1083-1088.	14.6	91
41	Composite Materials: Surfaceâ€Modified Porous Carbon Nitride Composites as Highly Efficient Electrocatalyst for Znâ€Air Batteries (Adv. Energy Mater. 1/2018). Advanced Energy Materials, 2018, 8, 1870002.	19.5	3
42	Surfaceâ€Modified Porous Carbon Nitride Composites as Highly Efficient Electrocatalyst for Znâ€Air Batteries. Advanced Energy Materials, 2018, 8, 1701642.	19.5	129
43	Elucidating the Reactivity and Mechanism of CO ₂ Electroreduction at Highly Dispersed Cobalt Phthalocyanine. ACS Energy Letters, 2018, 3, 1381-1386.	17.4	175
44	Laser-Induced Graphene from Wood Impregnated with Metal Salts and Use in Electrocatalysis. ACS Applied Nano Materials, 2018, 1, 5053-5061.	5.0	95
45	Laser-Induced Graphene. Accounts of Chemical Research, 2018, 51, 1609-1620.	15.6	441
46	High Performance Electrocatalytic Reaction of Hydrogen and Oxygen on Ruthenium Nanoclusters. ACS Applied Materials & Diterfaces, 2017, 9, 3785-3791.	8.0	108
47	Non-conventional fluorescent biogenic and synthetic polymers without aromatic rings. Polymer Chemistry, 2017, 8, 1722-1727.	3.9	152
48	Strained W(Se _{<i>x</i>} S _{1â€"<i>x</i>}) ₂ Nanoporous Films for Highly Efficient Hydrogen Evolution. ACS Energy Letters, 2017, 2, 1315-1320.	17.4	64
49	Laserâ€Induced Graphene Formation on Wood. Advanced Materials, 2017, 29, 1702211.	21.0	397
50	Microwave Heating of Functionalized Graphene Nanoribbons in Thermoset Polymers for Wellbore Reinforcement. ACS Applied Materials & Samp; Interfaces, 2016, 8, 12985-12991.	8.0	29
51	The synthesis of size-controlled 3C-SiC nanoflakes and their photoluminescent properties. Nanotechnology, 2016, 27, 255604.	2.6	7
52	Highâ€Performance Pseudocapacitive Microsupercapacitors from Laserâ€Induced Graphene. Advanced Materials, 2016, 28, 838-845.	21.0	439
53	Highâ€Performance Hydrogen Evolution from MoS _{2(1–<i>x</i>)} P <i>_x</i> Solid Solution. Advanced Materials, 2016, 28, 1427-1432.	21.0	309
54	Carbonâ€Based Composite as an Efficient and Stable Metalâ€Free Electrocatalyst. Advanced Functional Materials, 2016, 26, 3621-3629.	14.9	21

#	Article	IF	CITATIONS
55	Intrinsic and extrinsic defects in a family of coal-derived graphene quantum dots. Applied Physics Letters, 2015, 107, .	3.3	25
56	Graphene Quantum Dots Doping of MoS ₂ Monolayers. Advanced Materials, 2015, 27, 5235-5240.	21.0	168
57	Flexible and Stackable Laser-Induced Graphene Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3414-3419.	8.0	352
58	M ₃ C (M: Fe, Co, Ni) Nanocrystals Encased in Graphene Nanoribbons: An Active and Stable Bifunctional Electrocatalyst for Oxygen Reduction and Hydrogen Evolution Reactions. ACS Nano, 2015, 9, 7407-7418.	14.6	445
59	Flexible Boron-Doped Laser-Induced Graphene Microsupercapacitors. ACS Nano, 2015, 9, 5868-5875.	14.6	542
60	Boron/Nitrogen Co-Doped Helically Unzipped Multiwalled Carbon Nanotubes as Efficient Electrocatalyst for Oxygen Reduction. ACS Applied Materials & Samp; Interfaces, 2015, 7, 7786-7794.	8.0	85
61	Bandgap Engineering of Coal-Derived Graphene Quantum Dots. ACS Applied Materials & Samp; Interfaces, 2015, 7, 7041-7048.	8.0	182
62	<i>In Situ</i> Formation of Metal Oxide Nanocrystals Embedded in Laser-Induced Graphene. ACS Nano, 2015, 9, 9244-9251.	14.6	198
63	Laser-induced porous graphene films from commercial polymers. Nature Communications, 2014, 5, 5714.	12.8	1,645
64	Boron- and Nitrogen-Doped Graphene Quantum Dots/Graphene Hybrid Nanoplatelets as Efficient Electrocatalysts for Oxygen Reduction. ACS Nano, 2014, 8, 10837-10843.	14.6	396
65	Conjugated Polyelectrolytes with Aggregationâ€Enhanced Emission Characteristics: Synthesis and their Biological Applications. Chemistry - an Asian Journal, 2013, 8, 2436-2445.	3.3	41
66	Coal as an abundant source of graphene quantum dots. Nature Communications, 2013, 4, 2943.	12.8	686
67	Synthesis, solvatochromism, aggregation-induced emission and cell imaging of tetraphenylethene-containing BODIPY derivatives with large Stokes shifts. Chemical Communications, 2012, 48, 10099.	4.1	204
68	Electroreduction of Carbon Dioxide by Heterogenized Cofacial Porphyrins. Transactions of Tianjin University, $0,1.$	6.4	3
69	Anomalous Selfâ€Optimizing Microporous Grapheneâ€Based Lithiumâ€ion Battery Anode from Laser Activation of Small Organic Molecules. Small Methods, 0, , 2200280.	8.6	2