Maarten Brom

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/361370/publications.pdf

Version: 2024-02-01

49 papers

1,458 citations

430874 18 h-index 37 g-index

49 all docs 49 docs citations

49 times ranked

1636 citing authors

#	Article	IF	CITATIONS
1	⁶⁸ Ga-NODAGA-Exendin-4 PET/CT Improves the Detection of Focal Congenital Hyperinsulinism. Journal of Nuclear Medicine, 2022, 63, 310-315.	5.0	19
2	From Mice to Humans: The Exocrine Pancreas Does Not Matter in Human GLP-1 Receptor Imaging. Journal of Nuclear Medicine, 2021, 62, 745.1-745.	5.0	3
3	Molecular Imaging of Diabetes. , 2021, , 1415-1431.		O
4	Photodynamic Therapy Targeting Macrophages Using IRDye700DX-Liposomes Decreases Experimental Arthritis Development. Pharmaceutics, 2021, 13, 1868.	4.5	5
5	PET-Based Human Dosimetry of ⁶⁸ Ga-NODAGA-Exendin-4, a Tracer for β-Cell Imaging. Journal of Nuclear Medicine, 2020, 61, 112-116.	5.0	26
6	Targeted photodynamic therapy selectively kills activated fibroblasts in experimental arthritis. Rheumatology, 2020, 59, 3952-3960.	1.9	22
7	Noninvasive Monitoring of Glycemia-Induced Regulation of GLP-1R Expression in Murine and Human Islets of Langerhans. Diabetes, 2020, 69, 2246-2252.	0.6	6
8	Receptor-Targeted Photodynamic Therapy of Glucagon-Like Peptide 1 Receptor–Positive Lesions. Journal of Nuclear Medicine, 2020, 61, 1588-1593.	5.0	11
9	Targeted Optical Imaging of the Glucagonlike Peptide 1 Receptor Using Exendin-4-IRDye 800CW. Journal of Nuclear Medicine, 2020, 61, 1066-1071.	5.0	9
10	Measuring the Pancreatic \hat{l}^2 Cell Mass in Vivo with Exendin SPECT during Hyperglycemia and Severe Insulitis. Molecular Pharmaceutics, 2019, 16, 4024-4030.	4.6	14
11	Exendinâ€4 analogs in insulinoma theranostics. Journal of Labelled Compounds and Radiopharmaceuticals, 2019, 62, 656-672.	1.0	54
12	Succinylated Gelatin Improves the Theranostic Potential of Radiolabeled Exendin-4 in Insulinoma Patients. Journal of Nuclear Medicine, 2019, 60, 812-816.	5.0	21
13	Characterization of 111 In-labeled Glucose-Dependent Insulinotropic Polypeptide as a Radiotracer for Neuroendocrine Tumors. Scientific Reports, 2018, 8, 2948.	3.3	9
14	Enhanced Specific Activity by Multichelation of Exendin-3 Leads To Improved Image Quality and <i>In Vivo</i> Beta Cell Imaging. Molecular Pharmaceutics, 2018, 15, 486-494.	4.6	8
15	Detection and quantification of beta cells by PET imaging: why clinical implementation has never been closer. Diabetologia, 2018, 61, 2516-2519.	6.3	13
16	Validation of 111 In-Exendin SPECT for the Determination of the \hat{l}^2 -Cell Mass in BioBreeding Diabetes-Prone Rats. Diabetes, 2018, 67, 2012-2018.	0.6	13
17	Whole organ and islet of Langerhans dosimetry for calculation of absorbed doses resulting from imaging with radiolabeled exendin. Scientific Reports, 2017, 7, 39800.	3.3	9
18	Quantitative and longitudinal imaging of intramuscular transplanted islets of <scp>L</scp> angerhans with <scp>SPECT</scp> using [<scp>¹²³I</scp>] <scp>IBZM</scp> . Diabetes, Obesity and Metabolism, 2017, 19, 604-608.	4.4	3

#	Article	IF	Citations
19	Non-invasive in vivo determination of viable islet graft volume by 111In-exendin-3. Scientific Reports, 2017, 7, 7232.	3.3	20
20	Preclinical evaluation of PAC1 targeting with radiolabeled Maxadilan. Scientific Reports, 2017, 7, 1751.	3.3	1
21	SPECT of Transplanted Islets of Langerhans by Dopamine 2 Receptor Targeting in a Rat Model. Molecular Pharmaceutics, 2016, 13, 85-91.	4.6	9
22	Improved Quantification of the Beta Cell Mass after Pancreas Visualization with $\langle \sup 99m \rangle 111 \langle \sup 1.3 $ in Rodents. Molecular Pharmaceutics, 2016, 13, 3478-3483.	4.6	8
23	SPECT-OPT multimodal imaging enables accurate evaluation of radiotracers for \hat{l}^2 -cell mass assessments. Scientific Reports, 2016, 6, 24576.	3.3	12
24	The effect of purification of Ga-68-labeled exendin on in vivo distribution. EJNMMI Research, 2016, 6, 65.	2.5	18
25	In vivo imaging of beta cells with radiotracers: state of the art, prospects and recommendations for development and use. Diabetologia, 2016, 59, 1340-1349.	6.3	65
26	Strain Differences Determine the Suitability of Animal Models for Noninvasive In Vivo Beta Cell Mass Determination with Radiolabeled Exendin. Molecular Imaging and Biology, 2016, 18, 705-714.	2.6	20
27	Noninvasive Imaging of Islet Transplants with ¹¹¹ In-Exendin-3 SPECT/CT. Journal of Nuclear Medicine, 2016, 57, 799-804.	5.0	11
28	Graft revascularization is essential for non-invasive monitoring of transplanted islets with radiolabeled exendin. Scientific Reports, 2015, 5, 15521.	3.3	13
29	Combined Optical Coherence and Fluorescence Microscopy to assess dynamics and specificity of pancreatic beta-cell tracers. Scientific Reports, 2015, 5, 10385.	3.3	18
30	A Standardized Method for In Vivo Mouse Pancreas Imaging and Semiquantitative \hat{l}^2 Cell Mass Measurement by Dual Isotope SPECT. Molecular Imaging and Biology, 2015, 17, 58-66.	2.6	15
31	111In-exendin Uptake in the Pancreas Correlates With the \hat{I}^2 -Cell Mass and Not With the \hat{I}^2 -Cell Mass. Diabetes, 2015, 64, 1324-1328.	0.6	31
32	Non-invasive quantification of the beta cell mass by SPECT with 111In-labelled exendin. Diabetologia, 2014, 57, 950-959.	6.3	129
33	A comparison of three 67/68Ga-labelled exendin-4 derivatives for \hat{l}^2 -cell imaging on the GLP-1 receptor: the influence of the conjugation site of NODAGA as chelator. EJNMMI Research, 2014, 4, 31.	2.5	31
34	Beta cell imaging $\hat{a} \in \hat{a}$ a key tool in optimized diabetes prevention and treatment. Trends in Endocrinology and Metabolism, 2014, 25, 375-377.	7.1	38
35	Preclinical Studies of SPECT and PET Tracers for NET. PET Clinics, 2014, 9, 63-69.	3.0	1
36	PS2 - 7. Non-invasive determination of the beta cell mass by SPECT with 111In-exendin in a rat model for spontaneous type 1 diabetes. Nederlands Tijdschrift Voor Diabetologie, 2012, 10, 104-104.	0.0	0

#	Article	lF	CITATIONS
37	Radiolabelled GLPâ€1 analogues for <i>in vivo</i> targeting of insulinomas. Contrast Media and Molecular Imaging, 2012, 7, 160-166.	0.8	44
38	Obstacles on the way to the clinical visualisation of beta cells: looking for the Aeneas of molecular imaging to navigate between Scylla and Charybdis. Diabetologia, 2012, 55, 1247-1257.	6.3	53
39	Improved labelling of DTPA- and DOTA-conjugated peptides and antibodies with 111In in HEPES and MES buffer. EJNMMI Research, 2012, 2, 4.	2.5	44
40	Preclinical Evaluation of ⁶⁸ Ga-DOTA-Minigastrin for the Detection of Cholecystokinin-2/Gastrin Receptor-Positive Tumors. Molecular Imaging, 2011, 10, 7290.2010.00032.	1.4	19
41	Renal uptake of different radiolabelled peptides is mediated by megalin: SPECT and biodistribution studies in megalin-deficient mice. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 623-632.	6.4	108
42	PL - 92. Non-invasive determination of the beta cell mass in rats by SPECT with In-111-DTPA-Exendin-3. Nederlands Tijdschrift Voor Diabetologie, 2011, 9, 154-155.	0.0	0
43	Preclinical evaluation of 68Ga-DOTA-minigastrin for the detection of cholecystokinin-2/gastrin receptor-positive tumors. Molecular Imaging, 2011, 10, 144-52.	1.4	12
44	Development of Radiotracers for the Determination of the Beta-Cell Mass In Vivo. Current Pharmaceutical Design, 2010, 16, 1561-1567.	1.9	44
45	68Ga-labelled exendin-3, a new agent for the detection of insulinomas with PET. European Journal of Nuclear Medicine and Molecular Imaging, 2010, 37, 1345-1355.	6.4	124
46	Image-Quality Assessment for Several Positron Emitters Using the NEMA NU 4-2008 Standards in the Siemens Inveon Small-Animal PET Scanner. Journal of Nuclear Medicine, 2010, 51, 610-617.	5.0	138
47	Spatial Resolution and Sensitivity of the Inveon Small-Animal PET Scanner. Journal of Nuclear Medicine, 2009, 50, 139-147.	5.0	175
48	Replicase Genes of Murine Coronavirus Strains A59 and JHM Are Interchangeable: Differences in Pathogenesis Map to the 3′ One-Third of the Genome. Journal of Virology, 2007, 81, 1022-1026.	3.4	10
49	Role of the Replicase Gene of Murine Coronavirus JHM Strain in Hepatitis. Advances in Experimental Medicine and Biology, 2006, 581, 415-420.	1.6	2