Yoshihiro Matsuoka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3612259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-Wide Association Study of Morpho-Physiological Traits in Aegilops tauschii to Broaden Wheat Genetic Diversity. Plants, 2021, 10, 211.	3.5	2
2	Origin of host-specificity resistance genes of common wheat against non-adapted pathotypes of Pyricularia oryzae inferred from D-genome diversity in synthetic hexaploid wheat lines. Journal of General Plant Pathology, 2021, 87, 201-208.	1.0	1
3	Traits to Differentiate Lineages and Subspecies of Aegilops tauschii, the D Genome Progenitor Species of Bread Wheat. Diversity, 2021, 13, 217.	1.7	5
4	Origin and dynamics of Rwt6, a wheat gene for resistance to non-adapted pathotypes of Pyricularia oryzae. Phytopathology, 2021, , PHYTO02210080R.	2.2	0
5	Genetic Analysis of Hexaploid Wheat (Triticum aestivum L.) Using the Complete Sequencing of Chloroplast DNA and Haplotype Analysis of the Wknox1 Gene. International Journal of Molecular Sciences, 2021, 22, 12723.	4.1	1
6	Reproductive and genetic roles of the maternal progenitor in the origin of common wheat (<i>Triticum aestivum</i> L.). Ecology and Evolution, 2020, 10, 13926-13937.	1.9	3
7	Stripe rust resistance in wild wheat Aegilops tauschii Coss.: genetic structure and inheritance in synthetic allohexaploid Triticum wheat lines. Genetic Resources and Crop Evolution, 2019, 66, 909-920.	1.6	7
8	The role of reproductive isolation in allopolyploid speciation patterns: empirical insights from the progenitors of common wheat. Scientific Reports, 2017, 7, 16004.	3.3	15
9	Salt tolerance during germination and seedling growth of wild wheat Aegilops tauschii and its impact on the species range expansion. Scientific Reports, 2016, 6, 38554.	3.3	21
10	Intraspecific lineage divergence and its association with reproductive trait change during species range expansion in central Eurasian wild wheat Aegilops tauschii Coss. (Poaceae). BMC Evolutionary Biology, 2015, 15, 213.	3.2	34
11	The cuticular wax inhibitor locus Iw2 in wild diploid wheat Aegilops tauschii: phenotypic survey, genetic analysis, and implications for the evolution of common wheat. BMC Plant Biology, 2014, 14, 246.	3.6	20
12	Genetic Mechanisms of Allopolyploid Speciation Through Hybrid Genome Doubling. International Review of Cell and Molecular Biology, 2014, 309, 199-258.	3.2	13
13	Genetic Basis for Spontaneous Hybrid Genome Doubling during Allopolyploid Speciation of Common Wheat Shown by Natural Variation Analyses of the Paternal Species. PLoS ONE, 2013, 8, e68310.	2.5	51
14	Applicability of Aegilops tauschii drought tolerance traits to breeding of hexaploid wheat. Breeding Science, 2011, 61, 347-357.	1.9	50
15	Evolution of Polyploid Triticum Wheats under Cultivation: The Role of Domestication, Natural Hybridization and Allopolyploid Speciation in their Diversification. Plant and Cell Physiology, 2011, 52, 750-764.	3.1	339
16	Population structure of wild wheat Dâ€genome progenitor <i>Aegilops tauschii</i> Coss.: implications for intraspecific lineage diversification and evolution of common wheat. Molecular Ecology, 2010, 19, 999-1013.	3.9	115
17	Genealogical analysis of subspecies divergence and spikelet-shape diversification in central Eurasian wild wheat AegilopsÂtauschii Coss Plant Systematics and Evolution, 2009, 279, 233-244.	0.9	47
18	Natural variation of morphological traits in wild wheat progenitor Aegilops tauschii Coss Breeding	1.9	36

Yoshihiro Matsuoka

#	Article	IF	CITATIONS
19	Durum wheat cultivation associated with Aegilops tauschii in northern Iran. Genetic Resources and Crop Evolution, 2008, 55, 861-868.	1.6	21
20	Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. American Journal of Botany, 2008, 95, 1240-1253.	1.7	251
21	Evolutionary dynamics of wheat mitochondrial gene structure with special remarks on the origin and effects of RNA editing in cereals. Genes and Genetic Systems, 2008, 83, 301-320.	0.7	6
22	Flowering Time Diversification and Dispersal in Central Eurasian Wild Wheat Aegilops tauschii Coss.: Genealogical and Ecological Framework. PLoS ONE, 2008, 3, e3138.	2.5	70
23	Natural variation for fertile triploid F1 hybrid formation in allohexaploid wheat speciation. Theoretical and Applied Genetics, 2007, 115, 509-518.	3.6	73
24	Genealogical use of chloroplast DNA variation for intraspecific studies of Aegilops tauschii Coss Theoretical and Applied Genetics, 2005, 111, 265-271.	3.6	21
25	An Analysis of Genetic Diversity Across the Maize Genome Using Microsatellites. Genetics, 2005, 169, 1617-1630.	2.9	147
26	Genetic Diversity and Population Structure of Teosinte. Genetics, 2005, 169, 2241-2254.	2.9	182
27	Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss Theoretical and Applied Genetics, 2004, 109, 1710-1717.	3.6	137
28	Directional Evolution for Microsatellite Size in Maize. Molecular Biology and Evolution, 2003, 20, 1480-1483.	8.9	67
29	Whole Chloroplast Genome Comparison of Rice, Maize, and Wheat: Implications for Chloroplast Gene Diversification and Phylogeny of Cereals. Molecular Biology and Evolution, 2002, 19, 2084-2091.	8.9	87
30	Plasmon analysis of Triticum(wheat) and Aegilops. 2. Characterization and classification of 47 plasmons based on their effects on common wheat phenotype Genes and Genetic Systems, 2002, 77, 409-427.	0.7	49
31	Rate and Pattern of Mutation at Microsatellite Loci in Maize. Molecular Biology and Evolution, 2002, 19, 1251-1260.	8.9	248
32	A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6080-6084.	7.1	1,143
33	Chinese spring wheat (Triticum aestivum L.) chloroplast genome: Complete sequence and contig clones. Plant Molecular Biology Reporter, 2000, 18, 243-253.	1.8	62
34	Evolutionary dynamics of Ty1-copia group retrotransposons in grass shown by reverse transcriptase domain analysis. Molecular Biology and Evolution, 1999, 16, 208-217.	8.9	44
35	Presence of wheat retrotransposons in Gramineae species and the origin of wheat retrotransposon families Genes and Genetic Systems, 1997, 72, 335-343.	0.7	17
36	Origin and the transmission of some types of family 1 wheat retrotransposons in the two related genera Triticum and Aegilops Genes and Genetic Systems, 1997, 72, 345-351.	0.7	2

#	Article	IF	CITATIONS
37	Wheat retrotransposon families identified by reverse transcriptase domain analysis. Molecular Biology and Evolution, 1996, 13, 1384-1392.	8.9	40
38	Plasmon analysis of Triticum (wheat) and Aegilops. 1. Production of alloplasmic common wheats and their fertilities Genes and Genetic Systems, 1996, 71, 293-311.	0.7	63
39	Search for the wild ancestor of buckwheat II. Taxonomy of Fagopyrum (Polygonaceae) species based on morphology, isozymes and cpDNA variability Genes and Genetic Systems, 1996, 71, 383-390.	0.7	98
40	Absorption of atmospheric nitrogen dioxide by rice, wheat, and barley plants: estimation by the15N-dilution method. Soil Science and Plant Nutrition, 1981, 27, 255-261.	1.9	7