Yoshihiro Matsuoka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3612259/publications.pdf

Version: 2024-02-01

40 papers

3,608 citations

279798 23 h-index 315739 38 g-index

42 all docs 42 docs citations

times ranked

42

3568 citing authors

#	Article	IF	CITATIONS
1	A single domestication for maize shown by multilocus microsatellite genotyping. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 6080-6084.	7.1	1,143
2	Evolution of Polyploid Triticum Wheats under Cultivation: The Role of Domestication, Natural Hybridization and Allopolyploid Speciation in their Diversification. Plant and Cell Physiology, 2011, 52, 750-764.	3.1	339
3	Population structure and genetic diversity of New World maize races assessed by DNA microsatellites. American Journal of Botany, 2008, 95, 1240-1253.	1.7	251
4	Rate and Pattern of Mutation at Microsatellite Loci in Maize. Molecular Biology and Evolution, 2002, 19, 1251-1260.	8.9	248
5	Genetic Diversity and Population Structure of Teosinte. Genetics, 2005, 169, 2241-2254.	2.9	182
6	An Analysis of Genetic Diversity Across the Maize Genome Using Microsatellites. Genetics, 2005, 169, 1617-1630.	2.9	147
7	Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss Theoretical and Applied Genetics, 2004, 109, 1710-1717.	3. 6	137
8	Population structure of wild wheat Dâ€genome progenitor <i>Aegilops tauschii</i> Coss.: implications for intraspecific lineage diversification and evolution of common wheat. Molecular Ecology, 2010, 19, 999-1013.	3.9	115
9	Search for the wild ancestor of buckwheat II. Taxonomy of Fagopyrum (Polygonaceae) species based on morphology, isozymes and cpDNA variability Genes and Genetic Systems, 1996, 71, 383-390.	0.7	98
10	Whole Chloroplast Genome Comparison of Rice, Maize, and Wheat: Implications for Chloroplast Gene Diversification and Phylogeny of Cereals. Molecular Biology and Evolution, 2002, 19, 2084-2091.	8.9	87
11	Natural variation for fertile triploid F1 hybrid formation in allohexaploid wheat speciation. Theoretical and Applied Genetics, 2007, 115, 509-518.	3.6	73
12	Flowering Time Diversification and Dispersal in Central Eurasian Wild Wheat Aegilops tauschii Coss.: Genealogical and Ecological Framework. PLoS ONE, 2008, 3, e3138.	2.5	70
13	Directional Evolution for Microsatellite Size in Maize. Molecular Biology and Evolution, 2003, 20, 1480-1483.	8.9	67
14	Plasmon analysis of Triticum (wheat) and Aegilops. 1. Production of alloplasmic common wheats and their fertilities Genes and Genetic Systems, 1996, 71, 293-311.	0.7	63
15	Chinese spring wheat (Triticum aestivum L.) chloroplast genome: Complete sequence and contig clones. Plant Molecular Biology Reporter, 2000, 18, 243-253.	1.8	62
16	Genetic Basis for Spontaneous Hybrid Genome Doubling during Allopolyploid Speciation of Common Wheat Shown by Natural Variation Analyses of the Paternal Species. PLoS ONE, 2013, 8, e68310.	2.5	51
17	Applicability of Aegilops tauschii drought tolerance traits to breeding of hexaploid wheat. Breeding Science, 2011, 61, 347-357.	1.9	50
18	Plasmon analysis of Triticum(wheat) and Aegilops. 2. Characterization and classification of 47 plasmons based on their effects on common wheat phenotype Genes and Genetic Systems, 2002, 77, 409-427.	0.7	49

#	Article	IF	Citations
19	Genealogical analysis of subspecies divergence and spikelet-shape diversification in central Eurasian wild wheat AegilopsÂtauschii Coss Plant Systematics and Evolution, 2009, 279, 233-244.	0.9	47
20	Evolutionary dynamics of Ty1-copia group retrotransposons in grass shown by reverse transcriptase domain analysis. Molecular Biology and Evolution, 1999, 16, 208-217.	8.9	44
21	Wheat retrotransposon families identified by reverse transcriptase domain analysis. Molecular Biology and Evolution, 1996, 13, 1384-1392.	8.9	40
22	Natural variation of morphological traits in wild wheat progenitor Aegilops tauschii Coss Breeding Science, 2009, 59, 579-588.	1.9	36
23	Intraspecific lineage divergence and its association with reproductive trait change during species range expansion in central Eurasian wild wheat Aegilops tauschii Coss. (Poaceae). BMC Evolutionary Biology, 2015, 15, 213.	3.2	34
24	Genealogical use of chloroplast DNA variation for intraspecific studies of Aegilops tauschii Coss Theoretical and Applied Genetics, 2005, 111, 265-271.	3.6	21
25	Durum wheat cultivation associated with Aegilops tauschii in northern Iran. Genetic Resources and Crop Evolution, 2008, 55, 861-868.	1.6	21
26	Salt tolerance during germination and seedling growth of wild wheat Aegilops tauschii and its impact on the species range expansion. Scientific Reports, 2016, 6, 38554.	3.3	21
27	The cuticular wax inhibitor locus Iw2 in wild diploid wheat Aegilops tauschii: phenotypic survey, genetic analysis, and implications for the evolution of common wheat. BMC Plant Biology, 2014, 14, 246.	3.6	20
28	Presence of wheat retrotransposons in Gramineae species and the origin of wheat retrotransposon families Genes and Genetic Systems, 1997, 72, 335-343.	0.7	17
29	The role of reproductive isolation in allopolyploid speciation patterns: empirical insights from the progenitors of common wheat. Scientific Reports, 2017, 7, 16004.	3.3	15
30	Genetic Mechanisms of Allopolyploid Speciation Through Hybrid Genome Doubling. International Review of Cell and Molecular Biology, 2014, 309, 199-258.	3.2	13
31	Absorption of atmospheric nitrogen dioxide by rice, wheat, and barley plants: estimation by the 15N-dilution method. Soil Science and Plant Nutrition, 1981, 27, 255-261.	1.9	7
32	Stripe rust resistance in wild wheat Aegilops tauschii Coss.: genetic structure and inheritance in synthetic allohexaploid Triticum wheat lines. Genetic Resources and Crop Evolution, 2019, 66, 909-920.	1.6	7
33	Evolutionary dynamics of wheat mitochondrial gene structure with special remarks on the origin and effects of RNA editing in cereals. Genes and Genetic Systems, 2008, 83, 301-320.	0.7	6
34	Traits to Differentiate Lineages and Subspecies of Aegilops tauschii, the D Genome Progenitor Species of Bread Wheat. Diversity, 2021, 13, 217.	1.7	5
35	Reproductive and genetic roles of the maternal progenitor in the origin of common wheat (<i>Triticum aestivum</i> L.). Ecology and Evolution, 2020, 10, 13926-13937.	1.9	3
36	Origin and the transmission of some types of family 1 wheat retrotransposons in the two related genera Triticum and Aegilops Genes and Genetic Systems, 1997, 72, 345-351.	0.7	2

3

#	Article	IF	CITATIONS
37	Genome-Wide Association Study of Morpho-Physiological Traits in Aegilops tauschii to Broaden Wheat Genetic Diversity. Plants, 2021, 10, 211.	3.5	2
38	Origin of host-specificity resistance genes of common wheat against non-adapted pathotypes of Pyricularia oryzae inferred from D-genome diversity in synthetic hexaploid wheat lines. Journal of General Plant Pathology, 2021, 87, 201-208.	1.0	1
39	Genetic Analysis of Hexaploid Wheat (Triticum aestivum L.) Using the Complete Sequencing of Chloroplast DNA and Haplotype Analysis of the Wknox1 Gene. International Journal of Molecular Sciences, 2021, 22, 12723.	4.1	1
40	Origin and dynamics of Rwt6, a wheat gene for resistance to non-adapted pathotypes of Pyricularia oryzae. Phytopathology, 2021, , PHYTO02210080R.	2.2	0