Tatiana V Loboda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3610526/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sensing of Environment, 2009, 113, 408-420.	11.0	533
2	AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies. Remote Sensing of Environment, 2004, 93, 546-564.	11.0	224
3	Global distribution of agricultural fires in croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data. Global Biogeochemical Cycles, 2006, 20, n/a-n/a.	4.9	201
4	The spatial and temporal distribution of crop residue burning in the contiguous United States. Science of the Total Environment, 2009, 407, 5701-5712.	8.0	115
5	Can carbon emissions from tropical deforestation drop by 50% in 5Âyears?. Global Change Biology, 2016, 22, 1336-1347.	9.5	109
6	A MODIS-based burned area assessment for Russian croplands: Mapping requirements and challenges. Remote Sensing of Environment, 2016, 184, 506-521.	11.0	95
7	Analysis of the Impacts of armed conflict on the Eastern Afromontane forest region on the South Sudan — Uganda border using multitemporal Landsat imagery. Remote Sensing of Environment, 2012, 118, 10-20.	11.0	80
8	Comparison and assessment of coarse resolution land cover maps for Northern Eurasia. Remote Sensing of Environment, 2011, 115, 3539-3553.	11.0	75
9	Remote sensing estimates of stand-replacement fires in Russia, 2002–2011. Environmental Research Letters, 2014, 9, 105007.	5.2	70
10	Oil palm plantations in Peninsular Malaysia: Determinants and constraints on expansion. PLoS ONE, 2019, 14, e0210628.	2.5	61
11	Fire in arctic tundra of Alaska: past fire activity, future fire potential, and significance for land management and ecology. International Journal of Wildland Fire, 2015, 24, 1045.	2.4	53
12	Multi-Decadal Surface Water Dynamics in North American Tundra. Remote Sensing, 2017, 9, 497.	4.0	41
13	Quantifying burned area for North American forests: Implications for direct reduction of carbon stocks. Journal of Geophysical Research, 2011, 116, .	3.3	39
14	Spaceâ€Based Observations for Understanding Changes in the Arcticâ€Boreal Zone. Reviews of Geophysics, 2020, 58, e2019RG000652.	23.0	39
15	Mapping burned area in Alaska using MODIS data: a data limitations-driven modification to the regional burned area algorithm. International Journal of Wildland Fire, 2011, 20, 487.	2.4	35
16	Satellite Observations and Malaria: New Opportunities for Research and Applications. Trends in Parasitology, 2021, 37, 525-537.	3.3	34
17	ASSESSING THE RISK OF IGNITION IN THE RUSSIAN FAR EAST WITHIN A MODELING FRAMEWORK OF FIRE THREAT. , 2007, 17, 791-805.		29
18	Mapping remote rural settlements at 30†m spatial resolution using geospatial data-fusion. Remote Sensing of Environment, 2019, 233, 111386.	11.0	28

TATIANA V LOBODA

#	Article	IF	CITATIONS
19	A systematic evaluation of influence of image selection process on remote sensing-based burn severity indices in North American boreal forest and tundra ecosystems. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159, 63-77.	11.1	28
20	Strong cooling induced by stand-replacing fires through albedo in Siberian larch forests. Scientific Reports, 2018, 8, 4821.	3.3	23
21	Santa Ana winds and predictors of wildfire progression in southern California. International Journal of Wildland Fire, 2014, 23, 1119.	2.4	22
22	Development of Methods for Detection and Monitoring of Fire Disturbance in the Alaskan Tundra Using a Two-Decade Long Record of Synthetic Aperture Radar Satellite Images. Remote Sensing, 2014, 6, 6347-6364.	4.0	19
23	Modeling fire danger in data-poor regions: a case study from the Russian Far East. International Journal of Wildland Fire, 2009, 18, 19.	2.4	17
24	Mapping stand age dynamics of the Siberian larch forests from recent Landsat observations. Remote Sensing of Environment, 2016, 187, 320-331.	11.0	17
25	Static and dynamic controls on fire activity at moderate spatial and temporal scales in the Alaskan boreal forest. Ecosphere, 2016, 7, e01572.	2.2	16
26	Surface forcing of non-stand-replacing fires in Siberian larch forests. Environmental Research Letters, 2018, 13, 045008.	5.2	16
27	Expansion of Industrial Plantations Continues to Threaten Malayan Tiger Habitat. Remote Sensing, 2017, 9, 747.	4.0	15
28	Spatio-temporal patterns of optimal Landsat data for burn severity index calculations: Implications for high northern latitudes wildfire research. Remote Sensing of Environment, 2021, 258, 112393.	11.0	13
29	Spatial distribution of young forests and carbon fluxes within recent disturbances in Russia. Global Change Biology, 2017, 23, 138-153.	9.5	12
30	Mapping fractional cover of major fuel type components across Alaskan tundra. Remote Sensing of Environment, 2019, 232, 111324.	11.0	12
31	Cloudâ€ŧoâ€Ground Lightning and Nearâ€5urface Fire Weather Control Wildfire Occurrence in Arctic Tundra. Geophysical Research Letters, 2022, 49, .	4.0	12
32	Missing Burns in the High Northern Latitudes: The Case for Regionally Focused Burned Area Products. Remote Sensing, 2021, 13, 4145.	4.0	11
33	Examining aspiration's imprint on the landscape: Lessons from Mozambique's Limpopo National Park. Global Environmental Change, 2018, 51, 43-53.	7.8	9
34	Long-Term Record of Sampled Disturbances in Northern Eurasian Boreal Forest from Pre-2000 Landsat Data. Remote Sensing, 2014, 6, 6020-6038.	4.0	7
35	Impacts of wildfire and landscape factors on organic soil properties in Arctic tussock tundra. Environmental Research Letters, 2021, 16, 085004.	5.2	7
36	Adaptation strategies to climate change in the Arctic: a global patchwork of reactive community-scale initiatives. Environmental Research Letters, 2014, 9, 111006.	5.2	6

TATIANA V LOBODA

#	Article	IF	CITATIONS
37	Long-term trends in anthropogenic land use in Siberia and the Russian Far East: a case study synthesis from Landsat. Environmental Research Letters, 2020, 15, 105007.	5.2	6
38	Malaria Exposure in Ann Township, Myanmar, as a Function of Land Cover and Land Use: Combining Satellite Earth Observations and Field Surveys. GeoHealth, 2020, 4, e2020GH000299.	4.0	5
39	Modeling cloud-to-ground lightning probability in Alaskan tundra through the integration of Weather Research and Forecast (WRF) model and machine learning method. Environmental Research Letters, 2020, 15, 115009.	5.2	5
40	Consequences of a future increase in fire: The human health perspective. One Earth, 2021, 4, 487-488.	6.8	2
41	Characterizing Small-Town Development Using Very High Resolution Imagery within Remote Rural Settings of Mozambique. Remote Sensing, 2021, 13, 3385.	4.0	2