Ahmed E Elwardany

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3610019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Numerical and experimental investigation on air distributor design of fluidized bed reactor of sawdust pyrolysis. Energy, 2022, 239, 122179.	8.8	1
2	Kinetics and physical analyses for pyrolyzed Egyptian agricultural and woody biomasses: effect of microwave drying. Biomass Conversion and Biorefinery, 2021, 11, 2855-2868.	4.6	14
3	An Improved Prediction of Pre-Combustion Processes, Using the Discrete Multicomponent Model. Sustainability, 2021, 13, 2937.	3.2	3
4	Pyrolysis, kinetics, and structural analyses of agricultural residues in Egypt: For future assessment of their energy potential. Cleaner Engineering and Technology, 2021, 2, 100080.	4.0	9
5	Pyrolysis and combustion kinetics of thermally treated globe artichoke leaves. Energy Conversion and Management, 2021, 246, 114656.	9.2	8
6	Heating and Evaporation of Droplets of Multicomponent and Blended Fuels: A Review of Recent Modeling Approaches. Energy & Fuels, 2021, 35, 18220-18256.	5.1	9
7	Effect of cracked naphtha/biodiesel/diesel blends on performance, combustion and emissions characteristics of compression ignition engine. Energy, 2020, 192, 116590.	8.8	19
8	Investigating the engine performance, emissions and soot characteristics of CI engine fueled with diesel fuel loaded with graphene oxide-titanium dioxide nanocomposites. Fuel, 2020, 269, 117436.	6.4	26
9	Addition of two kerosene-based fuels to diesel–biodiesel fuel: Effect on combustion, performance and emissions characteristics of CI engine. Fuel, 2020, 269, 117473.	6.4	17
10	Improving performance and emissions characteristics of compression ignition engine: Effect of ferrocene nanoparticles to diesel-biodiesel blend. Fuel, 2020, 270, 117574.	6.4	44
11	Effect of injection pressure and ambient density on spray characteristics of diesel and biodiesel surrogate fuels. Fuel, 2019, 254, 115674.	6.4	38
12	The effect of microwave drying pretreatment on dry torrefaction of agricultural biomasses. Bioresource Technology, 2019, 286, 121400.	9.6	38
13	Effect of compression ratio on performance, combustion and emissions characteristics of compression ignition engine fueled with jojoba methyl ester. Renewable Energy, 2019, 141, 632-645.	8.9	35
14	Experimental Investigation on Performance of a Compression Ignition Engine Fueled with Waste Cooking Oil Biodiesel–Diesel Blend Enhanced with Iron-Doped Cerium Oxide Nanoparticles. Energies, 2019, 12, 798.	3.1	66
15	A surrogate fuel formulation to characterize heating and evaporation of light naphtha droplets. Combustion Science and Technology, 2018, 190, 1218-1231.	2.3	13
16	A hierarchical method for Bayesian inference of rate parameters from shock tube data: Application to the study of the reaction of hydroxyl with 2-methylfuran. Combustion and Flame, 2017, 184, 55-67.	5.2	12
17	Numerical Simulations of Hollow-Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels. Journal of Energy Resources Technology, Transactions of the ASME, 2016, 138, .	2.3	57
18	Physical and chemical effects of low octane gasoline fuels on compression ignition combustion. Applied Energy, 2016, 183, 1197-1208.	10.1	71

Ahmed E Elwardany

#	Article	IF	CITATIONS
19	Rate Coefficients of the Reaction of OH with Allene and Propyne at High Temperatures. Journal of Physical Chemistry A, 2016, 120, 7998-8005.	2.5	4
20	A chemical kinetic study of the reaction of hydroxyl with furans. Fuel, 2016, 166, 245-252.	6.4	12
21	A new formulation of physical surrogates of FACE A gasoline fuel based on heating and evaporation characteristics. Fuel, 2016, 176, 56-62.	6.4	31
22	Numerical Simulations of Hollow Cone Injection and Gasoline Compression Ignition Combustion With Naphtha Fuels. , 2015, , .		4
23	New approaches to the modelling of multi-component fuel droplet heating and evaporation. Journal of Physics: Conference Series, 2015, 585, 012014.	0.4	4
24	Unimolecular decomposition of formic and acetic acids: A shock tube/laser absorption study. Proceedings of the Combustion Institute, 2015, 35, 429-436.	3.9	28
25	High-temperature rate constant measurements for OH + xylenes. Combustion and Flame, 2015, 162, 2348-2353.	5.2	11
26	Shock tube measurements of the rate constants for seven large alkanes + OH. Proceedings of the Combustion Institute, 2015, 35, 189-196.	3.9	28
27	A shock tube and laser absorption study of ignition delay times and OH reaction rates of ketones: 2-Butanone and 3-buten-2-one. Combustion and Flame, 2014, 161, 725-734.	5.2	59
28	Modelling of biodiesel fuel droplet heating and evaporation. Fuel, 2014, 115, 559-572.	6.4	84
29	Reaction rate constants of H-abstraction by OH from large ketones: measurements and site-specific rate rules. Physical Chemistry Chemical Physics, 2014, 16, 12183-12193.	2.8	17
30	A comprehensive combustion chemistry study of 2,5-dimethylhexane. Combustion and Flame, 2014, 161, 1444-1459.	5.2	88
31	A multi-dimensional quasi-discrete model for the analysis of Diesel fuel droplet heating and evaporation. Fuel, 2014, 129, 238-266.	6.4	71
32	Modelling of heating and evaporation of gasoline fuel droplets: A comparative analysis of approximations. Fuel, 2013, 111, 643-647.	6.4	26
33	A quasi-discrete model for droplet heating and evaporation: Application to Diesel and gasoline fuels. Fuel, 2012, 97, 685-694.	6.4	36
34	Modelling of droplet heating and evaporation: recent results and unsolved problems. Journal of Physics: Conference Series, 2011, 268, 012026.	0.4	1
35	MONO- AND MULTI-COMPONENT DROPLET COOLING/HEATING AND EVAPORATION: COMPARATIVE ANALYSIS OF NUMERICAL MODELS. Atomization and Sprays, 2011, 21, 907-931.	0.8	31
36	A quasi-discrete model for heating and evaporation of complex multicomponent hydrocarbon fuel droplets. International Journal of Heat and Mass Transfer, 2011, 54, 4325-4332.	4.8	54

Ahmed E Elwardany

#	Article	IF	CITATIONS
37	Fuel Droplet Heating and Evaporation: New Hydrodynamic and Kinetic Models. , 2010, , .		2
38	A simplified model for bi-component droplet heating and evaporation. International Journal of Heat and Mass Transfer, 2010, 53, 4495-4505.	4.8	147
39	Monodisperse monocomponent fuel droplet heating and evaporation. Fuel, 2010, 89, 3995-4001.	6.4	33
40	MODELING OF THE PROCESSES IN DIESEL ENGINE-LIKE CONDITIONS: EFFECTS OF FUEL HEATING AND EVAPORATION. Atomization and Sprays, 2010, 20, 737-747.	0.8	11
41	Spray Modeling for Outwardly-Opening Hollow-Cone Injector. , 0, , .		21
42	Effects of In-Cylinder Mixing on Low Octane Gasoline Compression Ignition Combustion. , 0, , .		35
43	Modeling of Heating and Evaporation of FACE I Gasoline Fuel and its Surrogates. , 0, , .		8
44	Biomass Carbonization. , 0, , .		17
45	A model for mono- and multi-component droplet heating and evaporation and its implementation into ANSYS Fluent , 0, , .		3