Zhuoying Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3609735/publications.pdf

Version: 2024-02-01

50 3,725 24 48 papers citations h-index g-index

53 53 53 6266
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Thieno[3,2- <i>b</i>]thiopheneâ^Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices. Journal of the American Chemical Society, 2011, 133, 3272-3275.	13.7	854
2	Highâ€Performance Ambipolar Diketopyrrolopyrroleâ€Thieno[3,2â€ <i>b</i>]thiophene Copolymer Fieldâ€Effect Transistors with Balanced Hole and Electron Mobilities. Advanced Materials, 2012, 24, 647-652.	21.0	521
3	Real-Time Observation of Organic Cation Reorientation in Methylammonium Lead Iodide Perovskites. Journal of Physical Chemistry Letters, 2015, 6, 3663-3669.	4.6	322
4	Quasiâ€2D Colloidal Semiconductor Nanoplatelets for Narrow Electroluminescence. Advanced Functional Materials, 2014, 24, 295-302.	14.9	208
5	High Mobility Ambipolar Charge Transport in Polyselenophene Conjugated Polymers. Advanced Materials, 2010, 22, 2371-2375.	21.0	178
6	Plasmonic-enhanced perovskite–graphene hybrid photodetectors. Nanoscale, 2016, 8, 7377-7383.	5.6	144
7	Structure Direction of Ilâ^'VI Semiconductor Quantum Dot Binary Nanoparticle Superlattices by Tuning Radius Ratio. ACS Nano, 2008, 2, 1219-1229.	14.6	135
8	Silaindacenodithiophene Semiconducting Polymers for Efficient Solar Cells and High-Mobility Ambipolar Transistors. Chemistry of Materials, 2011, 23, 768-770.	6.7	126
9	Binary Nanoparticle Superlattices in the Semiconductorâ [°] Semiconductor System:  CdTe and CdSe. Journal of the American Chemical Society, 2007, 129, 15702-15709.	13.7	122
10	Barium titanate nanocrystals and nanocrystal thin films: Synthesis, ferroelectricity, and dielectric properties. Journal of Applied Physics, 2006, 100, 034316.	2.5	120
11	Organic Cation Rotation and Immobilization in Pure and Mixed Methylammonium Lead-Halide Perovskites. Journal of the American Chemical Society, 2017, 139, 4068-4074.	13.7	114
12	Charge Trapping Dynamics in PbS Colloidal Quantum Dot Photovoltaic Devices. ACS Nano, 2013, 7, 8771-8779.	14.6	78
13	Effect of Ion Migration-Induced Electrode Degradation on the Operational Stability of Perovskite Solar Cells. ACS Omega, 2018, 3, 10042-10047.	3.5	76
14	Revealing Crystallization Dynamics and the Compositional Control Mechanism of 2D Perovskite Film Growth by In Situ Synchrotron-Based GIXRD. ACS Energy Letters, 2020, 5, 8-16.	17.4	68
15	Enhancing the Efficiency and Stability of Triple-Cation Perovskite Solar Cells by Eliminating Excess Pbl ₂ from the Perovskite/Hole Transport Layer Interface. ACS Applied Materials & Samp; Interfaces, 2020, 12, 54824-54832.	8.0	56
16	Metal Acetylacetonates as General Precursors for the Synthesis of Early Transition Metal Oxide Nanomaterials. Journal of Nanomaterials, 2007, 2007, 1-7.	2.7	44
17	Reduced Carrier Recombination in PbS - CulnS2 Quantum Dot Solar Cells. Scientific Reports, 2015, 5, 10626.	3.3	44
18	Optimized Conditions for the Self-Organization of CdSe-Au and CdSe-CdSe Binary Nanoparticle Superlattices. Chemistry of Materials, 2008, 20, 3594-3600.	6.7	39

#	Article	IF	CITATIONS
19	Origin of the different transport properties of electron and hole polarons in an ambipolar polyselenophene-based conjugated polymer. Physical Review B, 2011, 84, .	3.2	39
20	Multifunctional materials for OFETs, LEFETs and NIR PLEDs. Journal of Materials Chemistry C, 2014, 2, 5133-5141.	5.5	38
21	TiO ₂ Nanocolumn Arrays for More Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Solar Cell	8.0	36
22	Microscopic Evidence of Upconversion-Induced Near-Infrared Light Harvest in Hybrid Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 3537-3543.	5.1	35
23	Compact layer free mixed-cation lead mixed-halide perovskite solar cells. Chemical Communications, 2018, 54, 2623-2626.	4.1	27
24	Ligand dependent oxidation dictates the performance evolution of high efficiency PbS quantum dot solar cells. Sustainable Energy and Fuels, 2020, 4, 108-115.	4.9	27
25	$W\tilde{A}^{1}\!\!/\!\!\!\!/$ stite nanocrystals: Synthesis, structure and superlattice formation. Journal of Materials Research, 2007, 22, 1987-1995.	2.6	24
26	The effect of ionic composition on acoustic phonon speeds in hybrid perovskites from Brillouin spectroscopy and density functional theory. Journal of Materials Chemistry C, 2018, 6, 3861-3868.	5.5	23
27	Electrooptical Spectroscopy of Uniaxially Aligned Polythiophene Films in Field-Effect Transistors. Chemistry of Materials, 2013, 25, 2075-2082.	6.7	22
28	Enhanced charge transport by incorporating additional thiophene units in the poly(fluorene-thienyl-benzothiadiazole) polymer. Organic Electronics, 2011, 12, 461-471.	2.6	21
29	Optical, structural, and electrical properties of PEDOT:PSS thin films doped with silver nanoprisms. Optical Materials Express, 2014, 4, 2525.	3.0	20
30	Flexible and wearable plasmonic-enabled organic/inorganic hybrid photothermoelectric generators. Materials Today Energy, 2021, 22, 100859.	4.7	20
31	Nanoscale thermometry with fluorescent yttrium-based Er/Yb-doped fluoride nanocrystals. Sensors and Actuators A: Physical, 2016, 250, 71-77.	4.1	19
32	Shortâ€Wave Infrared Sensor by the Photothermal Effect of Colloidal Gold Nanorods. Small, 2018, 14, e1704013.	10.0	16
33	New nonhydrolytic route to synthesize crystalline BaTiO3 nanocrystals with surface capping ligands. Journal of Materials Research, 2006, 21, 3187-3195.	2.6	13
34	Fluorescence enhancement near single TiO2 nanodisks. Applied Physics Letters, 2017, 111, .	3.3	13
35	Heavy-Metal-Free Flexible Hybrid Polymer-Nanocrystal Photodetectors Sensitive to $1.5\hat{l}_4$ m Wavelength. ACS Applied Materials & 2019, 11, 42571-42579.	8.0	12
36	(100) MgAl2O4 as a lattice-matched substrate for the epitaxial thin film deposition of the relaxor ferroelectric PMN-PT. Applied Physics A: Materials Science and Processing, 2010, 98, 187-194.	2.3	9

3

#	Article	IF	Citations
37	Nanoscale thermal characterization of high aspect ratio gold nanorods for photothermal applications at <i>λ</i> 倉= 1.5 <i>μ</i> m. Journal of Applied Physics, 2019, 125, .	2.5	9
38	Probing charge transfer states at organic and hybrid internal interfaces by photothermal deflection spectroscopy. Journal of Physics Condensed Matter, 2019, 31, 124001.	1.8	9
39	Long-Term Stable Near-Infrared–Short-Wave-Infrared Photodetector Driven by the Photothermal Effect of Polypyrrole Nanostructures. ACS Applied Materials & Samp; Interfaces, 2021, 13, 45957-45965.	8.0	9
40	Mapping plasmon-enhanced upconversion fluorescence of Er/Yb-doped nanocrystals near gold nanodisks. Nanoscale, 2019, 11, 10365-10371.	5.6	8
41	Hybrid plasmonic gold-nanorod–platinum short-wave infrared photodetectors with fast response. Nanoscale, 2019, 11, 18124-18131.	5.6	7
42	Upconversion nanoparticles extending the spectral sensitivity of silicon photodetectors to \hat{l} » = 1.5 \hat{l} 4m. Nanotechnology, 2020, 31, 495201.	2.6	4
43	Plasmon Coupled Colloidal Gold Nanorods for Nearâ€Infrared and Shortâ€Waveâ€Infrared Broadband Photodetection. Advanced Materials Technologies, 2022, 7, .	5.8	4
44	Ultrafast infrared spectroscopy reveals intragap states in methylammonium lead iodide perovskite materials. Proceedings of SPIE, 2014, , .	0.8	3
45	Thermal conductivity and diffusivity of triple-cation perovskite halide materials for solar cells. Journal of Applied Physics, 2020, 127, .	2.5	3
46	Luminescence enhancement effects on nanostructured perovskite thin films for Er/Yb-doped solar cells. Nanoscale Advances, 2022, 4, 1786-1792.	4.6	2
47	Colloidal upconversion nanocrystals enable low-temperature-grown GaAs photoconductive switch operating at \hat{l} » \hat{A} = $\hat{A}1.55$ \hat{l} $\frac{1}{4}$ m. Nanotechnology, 2021, 32, 45LT01.	2.6	1
48	Microscopic Characterizations of Upconversion-Induced Near-Infrared Light Harvest in Hybrid Perovskite Solar Cells. Microscopy and Microanalysis, 2019, 25, 2134-2135.	0.4	0
49	Direct imaging of fluorescence enhancement in the gap between two gold nanodisks. Applied Physics Letters, 2021, 118, 161105.	3.3	0
50	Ultrafast Optical Control of Charge Dynamics in Organic and Hybrid Electronic Nanodevices. , 2014, , .		0