Jürgen Rühe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3609376/publications.pdf

Version: 2024-02-01

258 papers 10,999 citations

25034 57 h-index 96 g-index

267 all docs

267 docs citations

267 times ranked

9598 citing authors

#	Article	IF	CITATIONS
1	Protein Repellent, Surfaceâ€Attached Hydrogels Through Spray Coating. Advanced Materials Interfaces, 2022, 9, .	3.7	6
2	The Structural and Mechanical Basis for Passiveâ€Hydraulic Pine Cone Actuation. Advanced Science, 2022, 9, e2200458.	11.2	23
3	Single-Color Barcoding for Multiplexed Hydrogel Bead-Based Immunoassays. ACS Applied Materials & Interfaces, 2022, 14, 25147-25154.	8.0	7
4	Hairy surfaces by cold drawing leading to dense lawns of high aspect ratio hairs. Scientific Reports, 2022, 12, .	3.3	0
5	Photoreactive polymer and C,H-insertion reaction to tailor the properties of CHA/gelatin-based scaffold. International Journal of Polymer Analysis and Characterization, 2022, 27, 326-345.	1.9	0
6	Hemocompatible Surfaces Through Surface-attached Hydrogel Coatings and their Functional Stability in a Medical Environment. ASAIO Journal, 2021, Publish Ahead of Print, .	1.6	1
7	Accessibility of fiber surface sites for polymeric additives determines dry and wet tensile strength of paper sheets. Cellulose, 2021, 28, 5775.	4.9	8
8	"CHicable―and "Clickable―Copolymers for Network Formation and Surface Modification. Langmuir, 2021, 37, 6510-6520.	3.5	4
9	Kinetics of Photocrosslinking and Surface Attachment of Thick Polymer Films. Macromolecules, 2021, 54, 6238-6246.	4.8	7
10	Measurements of periodically perturbed dewetting force fields and their consequences on the symmetry of the resulting patterns. Scientific Reports, 2021, 11, 13149.	3.3	0
11	Diazo-Based Copolymers for the Wet Strength Improvement of Paper Based on Thermally Induced CH-Insertion Cross-Linking. Biomacromolecules, 2021, 22, 2864-2873.	5.4	7
12	Thermally Induced Cross-Linking of Polymers via C,H Insertion Cross-Linking (CHic) under Mild Conditions. Journal of the American Chemical Society, 2021, 143, 10108-10119.	13.7	9
13	Programming sequential motion steps in 4D-printed hygromorphs by architected mesostructure and differential hygro-responsiveness. Bioinspiration and Biomimetics, 2021, 16, 055002.	2.9	30
14	Linear Cryogel Arrays: On the Fast Track for Borreliosis Detection. Analytical Chemistry, 2021, 93, 12426-12433.	6.5	4
15	Cryogel Monoliths for Analyte Enrichment by Capture and Release. Langmuir, 2021, 37, 11041-11048.	3.5	3
16	Reducing Unspecific Protein Adsorption in Microfluidic Papers Using Fiber-Attached Polymer Hydrogels. Sensors, 2021, 21, 6348.	3.8	5
17	Development of a Material Design Space for 4D-Printed Bio-Inspired Hygroscopically Actuated Bilayer Structures with Unequal Effective Layer Widths. Biomimetics, 2021, 6, 58.	3.3	11
18	Lubrication of surfaces covered by surface-attached hydrogel layers. Tribology International, 2020, 149, 105637.	5.9	12

#	Article	IF	CITATIONS
19	Prevention of Ocular Tenon Adhesion to Sclera by a PDMAA Polymer to Improve Results after Glaucoma Surgery. Macromolecular Rapid Communications, 2020, 41, 1900352.	3.9	6
20	Actomyosin, vimentin and LINC complex pull on osteosarcoma nuclei to deform on micropillar topography. Biomaterials, 2020, 234, 119746.	11.4	25
21	Towards programmable friction: control of lubrication with ionic liquid mixtures by automated electrical regulation. Scientific Reports, 2020, 10, 17634.	3.3	12
22	Application of printable antibody ink for solid-phase immobilization of ABO antibody using photoactive hydrogel for surface plasmon resonance imaging. Sensors and Actuators B: Chemical, 2020, 320, 128358.	7.8	8
23	Breaking the Interface: Efficient Extraction of Magnetic Beads from Nanoliter Droplets for Automated Sequential Immunoassays. Analytical Chemistry, 2020, 92, 10283-10290.	6.5	9
24	PnBA/PDMAAâ€Based Iron‣oaded Micropillars Allow for Discrete Cell Adhesion and Analysis of Actuationâ€Related Molecular Responses. Advanced Materials Interfaces, 2020, 7, 1901806.	3.7	14
25	Photo-Crosslinking of Thioxanthone Group Containing Copolymers for Surface Modification and Bioanalytics. Macromolecules, 2020, 53, 1752-1759.	4.8	10
26	Self-assembly of microsystem components with micrometer gluing pads through capillary forces. Journal of Manufacturing Processes, 2020, 53, 376-387.	5.9	3
27	Tailored disorder: a self-organized photonic contact for light trapping in silicon-based tandem solar cells. Optics Express, 2020, 28, 10909.	3.4	11
28	Macroscopic Friction Studies of Alkylglucopyranosides as Additives for Water-Based Lubricants. Lubricants, 2020, 8, 11.	2.9	14
29	On the relationship of YAP and FAK in hMSCs and osteosarcoma cells: Discrimination of FAK modulation by nuclear YAP depletion or YAP silencing. Cellular Signalling, 2019, 63, 109382.	3.6	18
30	The Surface Science of Microarray Generation–A Critical Inventory. ACS Applied Materials & Description of the Surfaces, 2019, 11, 39397-39409.	8.0	25
31	Waferâ€Scale Fabrication of Conducting Polymer Hydrogels for Microelectrodes and Flexible Bioelectronics. Advanced Biology, 2019, 3, e1900072.	3.0	16
32	Thin-Film Lubrication in the Water/Octyl \hat{l}^2 - <scp>d</scp> -Glucopyranoside System: Macroscopic and Nanoscopic Tribological Behavior. Langmuir, 2019, 35, 7136-7145.	3.5	9
33	Entropic death of nonpatterned and nanopatterned polyelectrolyte brushes. Journal of Polymer Science Part A, 2019, 57, 1283-1295.	2.3	7
34	Electrochemically Controlled Drug Release from a Conducting Polymer Hydrogel (PDMAAp/PEDOT) for Local Therapy and Bioelectronics. Advanced Healthcare Materials, 2019, 8, e1801488.	7.6	71
35	Confining acrylate-benzophenone copolymers into adhesive micropads by photochemical crosslinking. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 377, 80-91.	3.9	5
36	Biophysical Insights on the Enrichment of Cancer Cells from Whole Blood by (Affinity) Filtration. Scientific Reports, 2019, 9, 1246.	3.3	4

#	Article	IF	CITATIONS
37	Surface-attached dual-functional hydrogel for controlled cell adhesion based on poly(N,N-dimethylacrylamide). Journal of Polymer Research, 2019, 26, 1.	2.4	17
38	Notice of Violation of IEEE Publication Principles: Chip Based Microelectrochemical Cell Array for Whole-Cell Patch-Clamp Recording. , 2019, , .		0
39	Hydrogel based protein biochip for parallel detection of biomarkers for diagnosis of a Systemic Inflammatory Response Syndrome (SIRS) in human serum. PLoS ONE, 2019, 14, e0225525.	2.5	7
40	Chemical Modification of Fiberâ€Matrix Interfaces of Glass Fiber Reinforced Thermoplastics and Methods for Interface Characterization. Advanced Engineering Materials, 2019, 21, 1800590.	3.5	8
41	Dewetting and photochemical crosslinking of adhesive pads onto lithographically patterned surfaces. Journal of Applied Polymer Science, 2019, 136, 47321.	2.6	3
42	Development of surface-attached thin film of non-fouling hydrogel from poly(2-oxazoline). Journal of Polymer Research, 2019, 26, 1.	2.4	6
43	Geometrically enhanced sensor surfaces for the selective capture of cell-like particles in a laminar flow field. Biomicrofluidics, 2018, 12, 014116.	2.4	1
44	"Nickel Nanoflowers―with Surface-Attached Fluoropolymer Networks by C,H Insertion for the Generation of Metallic Superhydrophobic Surfaces. Langmuir, 2018, 34, 5342-5351.	3.5	11
45	Galvanically induced potentials to enable minimal tribochemical wear of stainless steel lubricated with sodium chloride and ionic liquid aqueous solution. Friction, 2018, 6, 230-242.	6.4	30
46	Toward a New Generation of Smart Biomimetic Actuators for Architecture. Advanced Materials, 2018, 30, e1703653.	21.0	108
47	Surface-attached hydrogel coatings via C,H-insertion crosslinking for biomedical and bioanalytical applications (Review). Biointerphases, 2018, 13, 010801.	1.6	71
48	Blocking-Free and Substrate-Independent Serological Microarray Immunoassays. Biomacromolecules, 2018, 19, 4641-4649.	5.4	9
49	One-Step Photochemical Generation of Biofunctionalized Hydrogel Particles via Two-Phase Flow. ACS Applied Materials & Samp; Interfaces, 2018, 10, 39411-39416.	8.0	8
50	Nonâ€Delaminating Polymer Hydrogel Coatings via C,Hâ€Insertion Crosslinking (CHic)—A Case Study of Poly(oxanorbornenes). Macromolecular Chemistry and Physics, 2018, 219, 1800397.	2.2	6
51	Effect of geometrical constraints on human pluripotent stem cell nuclei in pluripotency and differentiation. Integrative Biology (United Kingdom), 2018, 10, 278-289.	1.3	17
52	Design of interfaces with lithographically patterned adhesive pads for gluing at the microscale. International Journal of Adhesion and Adhesives, 2018, 85, 88-99.	2.9	0
53	Extending the Lotus Effect: Repairing Superhydrophobic Surfaces after Contamination or Damage by CHic Chemistry. Langmuir, 2018, 34, 8661-8669.	3.5	7
54	Biomimetic Actuators: Toward a New Generation of Smart Biomimetic Actuators for Architecture (Adv. Mater. 19/2018). Advanced Materials, 2018, 30, 1870135.	21.0	4

#	Article	IF	CITATIONS
55	Composite material consisting of microporous \hat{l}^2 -TCP ceramic and alginate for delayed release of antibiotics. Acta Biomaterialia, 2017, 51, 433-446.	8.3	23
56	Molting Materials: Restoring Superhydrophobicity after Severe Damage via Snakeskin-like Shedding. Langmuir, 2017, 33, 4833-4839.	3.5	16
57	Wetting Transitions in Polymer Nanograss Generated by Nanoimprinting. Macromolecular Chemistry and Physics, 2017, 218, 1700056.	2.2	5
58	Morphology of Nanostructured Polymer Brushes Dependent on Production and Treatment. Macromolecules, 2017, 50, 4715-4724.	4.8	12
59	Preparation of Linear Cryogel Arrays as a Microfluidic Platform for Immunochromatographic Assays. Analytical Chemistry, 2017, 89, 5697-5701.	6.5	11
60	Functional Cryogel Microstructures Prepared by Light-Induced Cross-Linking of a Photoreactive Copolymer. ACS Applied Materials & Samp; Interfaces, 2017, 9, 12165-12170.	8.0	18
61	Reduced Lateral Confinement and Its Effect on Stability in Patterned Strong Polyelectrolyte Brushes. Langmuir, 2017, 33, 3296-3303.	3.5	16
62	Highly Selective Capture Surfaces on Medical Wires for Fishing Tumor Cells in Whole Blood. Analytical Chemistry, 2017, 89, 1846-1854.	6.5	29
63	Malonic Acid Diazoesters for Câ^'H Insertion Crosslinking (CHic) Reactions: A Versatile Method for the Generation of Tailorâ€Made Surfaces. Angewandte Chemie - International Edition, 2017, 56, 14405-14410.	13.8	20
64	Malonic Acid Diazoesters for Câ^'H Insertion Crosslinking (CHic) Reactions: A Versatile Method for the Generation of Tailorâ€Made Surfaces. Angewandte Chemie, 2017, 129, 14597-14602.	2.0	6
65	And There Was Light: Prospects for the Creation of Micro- and Nanostructures through Maskless Photolithography. ACS Nano, 2017, 11, 8537-8541.	14.6	26
66	Surfaceâ€attached polymer networks through carbene intermediates generated from αâ€diazo esters. Journal of Polymer Science Part A, 2017, 55, 3276-3285.	2.3	12
67	Polymer Microstructures through Twoâ€Photon Crosslinking. Advanced Materials, 2017, 29, 1703469.	21.0	22
68	Macroscopic Superlow Friction of Steel and Diamond-Like Carbon Lubricated with a Formanisotropic 1,3-Diketone. ACS Omega, 2017, 2, 8330-8342.	3.5	17
69	An interpenetrating, microstructurable and covalently attached conducting polymer hydrogel for neural interfaces. Acta Biomaterialia, 2017, 58, 365-375.	8.3	70
70	PDMAA Hydrogel Coated U-Bend Humidity Sensor Suited for Mass-Production. Sensors, 2017, 17, 517.	3.8	18
71	On the Lubrication Mechanism of Surfaces Covered with Surfaceâ€Attached Hydrogels. Macromolecular Chemistry and Physics, 2016, 217, 526-536.	2.2	23
72	On the Generation of Polyetherâ€Based Coatings through Photoinduced C,H Insertion Crosslinking. Macromolecular Chemistry and Physics, 2016, 217, 1457-1466.	2.2	21

#	Article	IF	Citations
73	Low Ice Adhesion on Nano-Textured Superhydrophobic Surfaces under Supersaturated Conditions. ACS Applied Materials & District Superfaces, 2016, 8, 12583-12587.	8.0	179
74	Analysis of Calcium Transients and Uniaxial Contraction Force in Single Human Embryonic Stem Cell-Derived Cardiomyocytes on Microstructured Elastic Substrate with Spatially Controlled Surface Chemistries. Langmuir, 2016, 32, 12190-12201.	3.5	18
75	A Planar low-cost full-polymer Optical Humidity Sensor. Procedia Technology, 2016, 26, 530-536.	1.1	10
76	Remotely Controlled Micromanipulation by Buckling Instabilities in Fe ₃ O ₄ Nanoparticle Embedded Poly(<i>N</i> i>isopropylacrylamide) Surface Arrays. ACS Applied Materials & amp; Interfaces, 2016, 8, 28012-28018.	8.0	3
77	Humidity Driven Swelling of the Surface-Attached Poly(<i>N</i> -alkylacrylamide) Hydrogels. Macromolecules, 2016, 49, 8254-8264.	4.8	20
78	Kinetics of the Generation of Surface-Attached Polymer Networks through C, H-Insertion Reactions. Macromolecules, 2016, 49, 2438-2447.	4.8	51
79	Fabrication of protein microarrays for alpha fetoprotein detection by using a rapid photo-immobilization process. Sensing and Bio-Sensing Research, 2016, 7, 95-99.	4.2	5
80	Manufacturing of embedded multimode waveguides by reactive lamination of cyclic olefin polymer and polymethylmethacrylate. Optical Engineering, 2016, 55, 037103.	1.0	6
81	Capacitive humidity and dew-point sensing: Influence of wetting of surface-attached polymer monolayers on the sensor response. Sensors and Actuators B: Chemical, 2016, 222, 87-94.	7.8	15
82	Towards High Performance Detection of Circulating Tumor Cells in Whole Blood. Procedia Engineering, 2015, 120, 380-383.	1.2	1
83	Development of a multi-analyte CMOS sensor for point-of-care testing. Sensing and Bio-Sensing Research, 2015, 5, 117-122.	4.2	8
84	Particle Extraction in Plug-based Microfluidics. Procedia Engineering, 2015, 120, 96-99.	1.2	3
85	Fabrication and implantation of hydrogel coated, flexible polyimide electrodes. , 2015, , .		5
86	Novel Method for Loading Microporous Ceramics Bone Grafts by Using a Directional Flow. Journal of Functional Biomaterials, 2015, 6, 1085-1098.	4.4	8
87	Lamination of chemical incompatible optical polymer layers. Proceedings of SPIE, 2015, , .	0.8	1
88	Nucleus deformation of SaOs-2 cells on rhombic $\hat{A}\mu$ -pillars. Journal of Materials Science: Materials in Medicine, 2015, 26, 108.	3 . 6	11
89	Polymer hybrid materials for planar optronic systems. Proceedings of SPIE, 2015, , .	0.8	1
90	Ultralow Friction of Steel Surfaces Using a 1,3-Diketone Lubricant in the Thin Film Lubrication Regime. Langmuir, 2015, 31, 11033-11039.	3.5	35

#	Article	IF	Citations
91	A Novel Reactive Lamination Process for the Generation of Functional Multilayer Foils for Optical Applications. Procedia Technology, 2014, 15, 147-155.	1.1	10
92	Platelet Repellent Properties of Hydrogel Coatings on Polyurethane-Coated Glass Surfaces. ASAIO Journal, 2014, 60, 587-593.	1.6	18
93	Fluorescent sensibility of microarrays through functionalized adhesive polydiacetylene vesicles. Sensors and Actuators A: Physical, 2014, 214, 45-57.	4.1	3
94	"Grafting Through― Mechanistic Aspects of Radical Polymerization Reactions with Surface-Attached Monomers. Macromolecules, 2014, 47, 2929-2937.	4.8	82
95	Solid-Phase Extraction in Segmented Flow. Langmuir, 2014, 30, 12804-12811.	3.5	4
96	Raising the shields: PCR in the presence of metallic surfaces protected by tailor-made coatings. Colloids and Surfaces B: Biointerfaces, 2014, 122, 576-582.	5.0	4
97	Generation of chip based microelectrochemical cell arrays for long-term and high-resolution recording of ionic currents through ion channel proteins. Sensors and Actuators B: Chemical, 2014, 205, 268-275.	7.8	8
98	Binding of Functionalized Polymers to Surface-Attached Polymer Networks Containing Reactive Groups. Macromolecules, 2014, 47, 2695-2702.	4.8	13
99	On the mechanism of deposit formation during thermal oxidation of mineral diesel and diesel/biodiesel blends under accelerated conditions. Fuel, 2014, 133, 245-252.	6.4	31
100	Microcones and Nanograss: Toward Mechanically Robust Superhydrophobic Surfaces. Langmuir, 2014, 30, 4342-4350.	3.5	87
101	Colorimetric sensing properties of catechol-functional polymerized vesicles in aqueous solution and at solid surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 441, 242-254.	4.7	11
102	Preparation of hydrophilic polymeric nanolayers attached to solid surfaces via photochemical and ATRP techniques. Journal of Polymer Research, 2013, 20, 1.	2.4	6
103	Tailorâ€Made Polymer Multilayers. Advanced Functional Materials, 2013, 23, 6019-6023.	14.9	31
104	Preparation of Surface-Attached Polymer Layers by Thermal or Photochemical Activation of α-Diazoester Moieties. Langmuir, 2013, 29, 10932-10939.	3.5	29
105	Time-Resolved Analysis of Biological Reactions Based on Heterogeneous Assays in Liquid Plugs of Nanoliter Volume. Analytical Chemistry, 2013, 85, 9469-9477.	6.5	5
106	Sensitivity of microarray based immunoassays using surface-attached hydrogels. Analytica Chimica Acta, 2013, 781, 72-79.	5.4	28
107	Influence of the Molecular Structure of Surface-Attached Poly(<i>N</i> -alkyl Acrylamide) Coatings on the Interaction of Surfaces with Proteins, Cells and Blood Platelets. Macromolecular Bioscience, 2013, 13, 873-884.	4.1	62
108	Surfaces with Combined Microscale and Nanoscale Structures: A Route to Mechanically Stable Superhydrophobic Surfaces?. Langmuir, 2013, 29, 3765-3772.	3.5	84

#	Article	IF	Citations
109	1,3-Diketone Fluids and Their Complexes with Iron. Journal of Physical Chemistry A, 2013, 117, 3369-3376.	2.5	17
110	Ultralow Friction Induced by Tribochemical Reactions: A Novel Mechanism of Lubrication on Steel Surfaces. Langmuir, 2013, 29, 5207-5213.	3.5	30
111	Universal nucleic acid sequence-based amplification for simultaneous amplification of messengerRNAs and microRNAs. Analytica Chimica Acta, 2012, 754, 1-7.	5.4	17
112	Light-Induced Switching of Surfaces at Wetting Transitions through Photoisomerization of Polymer Monolayers. Langmuir, 2012, 28, 15038-15046.	3.5	64
113	Protein-resistant polymer surfaces. Journal of Materials Chemistry, 2012, 22, 19547.	6.7	112
114	Parallel Acquisition of High Resolution Polymer Mass-Spectra onÂa Nanopore Microbilayer Array. Biophysical Journal, 2012, 102, 28a.	0.5	2
115	Superaerophobicity: Repellence of Air Bubbles from Submerged, Surface-Engineered Silicon Substrates. Langmuir, 2012, 28, 14968-14973.	3.5	29
116	Experimental investigation of the flow induced by artificial cilia. Lab on A Chip, 2011, 11, 2017.	6.0	62
117	Simple One-Step Process for Immobilization of Biomolecules on Polymer Substrates Based on Surface-Attached Polymer Networks. Langmuir, 2011, 27, 6116-6123.	3.5	59
118	Photomechanical Degrafting of Azo-Functionalized Poly(methacrylic acid) (PMAA) Brushes. Journal of Physical Chemistry B, 2011, 115, 10431-10438.	2.6	45
119	High Resolution Single Molecule Analysis using Nanopore Recording on Microelectrode Cavity Arrays. Biophysical Journal, 2011, 100, 608a.	0.5	0
120	Nanopore-Based Single-Molecule Mass Spectrometry on a Lipid Membrane Microarray. ACS Nano, 2011, 5, 8080-8088.	14.6	140
121	Synthesis and Morphological Study of Thick Benzyl Methacrylate–Styrene Diblock Copolymer Brushes. Langmuir, 2011, 27, 13284-13292.	3.5	17
122	Magnetically-actuated artificial cilia for microfluidic propulsion. Lab on A Chip, 2011, 11, 2002.	6.0	147
123	Dielectrophoretic Positioning of Cells on Planar Microelectrode Cavity Arrays (MECA) for High Throughput Patch-Clamp Measurements. Biophysical Journal, 2011, 100, 305a.	0.5	1
124	Micro to nano: Surface size scale and superhydrophobicity. Beilstein Journal of Nanotechnology, 2011, 2, 327-332.	2.8	15
125	Artificial Cilia: Generation of Magnetic Actuators in Microfluidic Systems. Advanced Functional Materials, 2011, 21, 3314-3320.	14.9	76
126	Polysaccharide microarrays with a CMOS based signal detection unit. Biosensors and Bioelectronics, 2011, 26, 1839-1846.	10.1	17

#	Article	IF	CITATIONS
127	Surface topography, morphology and functionality of silver containing plasma polymer nanocomposites. Surface and Coatings Technology, 2011, 205, 2978-2984.	4.8	22
128	Microarray-based amplification and detection of RNA by nucleic acid sequence based amplification. Analytical and Bioanalytical Chemistry, 2010, 397, 3533-3541.	3.7	20
129	A polymer-based DNA biochip platform for human papilloma virus genotyping. Journal of Virological Methods, 2010, 163, 40-48.	2.1	42
130	Tailormade Microfluidic Devices Through Photochemical Surface Modification. Macromolecular Chemistry and Physics, 2010, 211, 195-203.	2.2	15
131	Printed protein microarrays on unmodified plastic substrates. Analytica Chimica Acta, 2010, 671, 92-98.	5. 4	31
132	Formation and Distribution of Silver Nanoparticles in a Functional Plasma Polymer Matrix and Related Ag ⁺ Release Properties. Plasma Processes and Polymers, 2010, 7, 619-625.	3.0	74
133	Adaptive Platform for Highly Parallel Low-Noise Recordings of Single Membrane Proteins. Biophysical Journal, 2010, 98, 188a.	0.5	0
134	Temperature and Time-Resolved Total Internal Reflectance Fluorescence Analysis of Reusable DNA Hydrogel Chips. Analytical Chemistry, 2010, 82, 6124-6131.	6.5	10
135	Polymerizable Biomimetic Vesicles with Controlled Local Presentation of Adhesive Functional DOPA Groups. Langmuir, 2010, 26, 8573-8581.	3 . 5	27
136	Attachment of Polymer Films to Solid Surfaces via Thermal Activation of Self-assembled Monolayers Containing Sulphonyl Azide Group. Langmuir, 2010, 26, 769-774.	3.5	20
137	Step-and-Repeat Assembly of Molecularly Controlled Ultrathin Polyaramide Layers. Macromolecules, 2010, 43, 9056-9062.	4.8	14
138	Enzyme Containing Redox Polymer Networks for Biosensors or Biofuel Cells: A Photochemical Approach. Langmuir, 2010, 26, 6019-6027.	3.5	55
139	Nucleic acid sequence-based amplification in formalin-fixed and paraffin-embedded breast-cancer tissues. Journal of Clinical Pathology, 2010, 63, 1071-1076.	2.0	3
140	Compartmentalizing a lipid bilayer by tuning lateral stress in a physisorbed polymer-tethered membrane. Soft Matter, 2010, 6, 2723.	2.7	19
141	Polymer characterisation on langasite delay lines. , 2009, , .		0
142	The design of thin polymer membranes filled with magnetic particles on a microstructured silicon surface. Nanotechnology, 2009, 20, 255301.	2.6	14
143	Polymer Brushes with Nanometerâ€Scale Gradients. Advanced Materials, 2009, 21, 4706-4710.	21.0	56
144	Photochemical Generation of Ferroceneâ€Based Redoxâ€Polymer Networks. Macromolecular Rapid Communications, 2009, 30, 1817-1822.	3.9	22

#	Article	IF	Citations
145	Cell microâ€arrays from surfaceâ€attached peptideâ€polymer monolayers. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 468-473.	1.8	15
146	Polymer-Tethered Bimolecular Lipid Membranes. Advances in Polymer Science, 2009, , 87-111.	0.8	17
147	Some thoughts on superhydrophobic wetting. Soft Matter, 2009, 5, 51-61.	2.7	341
148	Wetting of Silicon Nanograss: From Superhydrophilic to Superhydrophobic Surfaces. Advanced Materials, 2008, 20, 159-163.	21.0	227
149	Mimicking the Stenocara Beetle—Dewetting of Drops from a Patterned Superhydrophobic Surface. Langmuir, 2008, 24, 6154-6158.	3.5	158
150	Biocompatibility of Microsystems. , 2008, , 107-130.		4
151	Grafting of PMMA brushes on titania nanoparticulate surface via surface-initiated conventional radical and "controlled―radical polymerization (ATRP). Journal of Nanoparticle Research, 2008, 10, 415-427.	1.9	39
152	Transbilayer coupling of obstructed lipid diffusion in polymer-tethered phospholipid bilayers. Soft Matter, 2008, 4, 1899.	2.7	41
153	Planar microelectrode-cavity array for high-resolution and parallel electrical recording of membrane ionic currents. Lab on A Chip, 2008, 8, 938.	6.0	100
154	A Robust Method for the Immobilization of Polymer Molecules on SiO ₂ Surfaces. Macromolecules, 2008, 41, 873-878.	4.8	37
155	Drops on Microstructured Surfaces Coated with Hydrophilic Polymers:  Wenzel's Model and Beyond. Langmuir, 2008, 24, 1959-1964.	3.5	59
156	Surface Attached Polymer Networks through Thermally Induced Cross-Linking of Sulfonyl Azide Group Containing Polymers. Macromolecules, 2008, 41, 9284-9289.	4.8	83
157	Surface-Attached PDMAAâ^GRGDSP Hybrid Polymer Monolayers that Promote the Adhesion of Living Cells. Biomacromolecules, 2008, 9, 543-552.	5.4	49
158	Mixing Immiscible Fluids in a Microchannel Through Surface Modifications. , 2007, , .		0
159	Self-Affine Surfaces of Polymer Brushes. Macromolecules, 2007, 40, 6361-6369.	4.8	10
160	Synthesis of Functionalized Polymer Monolayers from Active Ester Brushes. Macromolecules, 2007, 40, 5497-5503.	4.8	64
161	Condensation and Wetting Transitions on Microstructured Ultrahydrophobic Surfaces. Langmuir, 2007, 23, 3820-3824.	3.5	217
162	Contact Line Shape on Ultrahydrophobic Post Surfaces. Langmuir, 2007, 23, 3179-3183.	3.5	62

#	Article	IF	Citations
163	Domain Registration in Raft-Mimicking Lipid Mixtures Studied Using Polymer-Tethered Lipid Bilayers. Biophysical Journal, 2007, 92, 1263-1270.	0.5	121
164	Memory of Surface Patterns in Mixed Polymer Brushes:  Simulation and Experiment. Langmuir, 2007, 23, 279-285.	3.5	64
165	Swellable Surface-Attached Polymer Microlenses with Tunable Focal Length. Advanced Materials, 2007, 19, 456-460.	21.0	13
166	Single-step centrifugal hematocrit determination on a 10-\$ processing device. Biomedical Microdevices, 2007, 9, 795-799.	2.8	61
167	Fabrication of Chemically Microstructured Polymer Brushes. Langmuir, 2006, 22, 8571-8575.	3.5	29
168	Advancing and Receding Motion of Droplets on Ultrahydrophobic Post Surfaces. Langmuir, 2006, 22, 7652-7657.	3.5	164
169	Local Composition of Nanophase-Separated Mixed Polymer Brushes. Macromolecules, 2006, 39, 3056-3064.	4.8	54
170	Domain Memory of Mixed Polymer Brushes. Langmuir, 2006, 22, 4660-4667.	3.5	26
171	Tunable Bragg filters based on polymer swelling. Applied Optics, 2006, 45, 4284.	2.1	38
172	Ambient temperature ATRP of benzyl methacrylate as a tool for the synthesis of block copolymers with styrene. Journal of Polymer Science Part A, 2006, 44, 2848-2861.	2.3	14
173	Dynamics of end-grafted polystyrene brushes in theta solvents. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 3590-3597.	2.1	10
174	Growth of poly(methyl methacrylate) brushes on silicon surfaces by atom transfer radical polymerization. Journal of Polymer Science Part A, 2006, 44, 1758-1769.	2.3	45
175	The activity of covalently immobilized Grubbs–Hoveyda type catalyst is highly dependent on the nature of the support material. Journal of Organometallic Chemistry, 2006, 691, 5172-5180.	1.8	33
176	Immobilization and AFM of single 4×6-mer tarantula hemocyanin molecules. Micron, 2006, 37, 735-741.	2.2	4
177	Ring-Closure Metathesis in Supercritical Carbon Dioxide as Sole Solvent with Use of Covalently Immobilized Ruthenium Catalysts. European Journal of Organic Chemistry, 2006, 2006, 577-581.	2.4	43
178	Novel azobenzene-containing polyamic acids as Langmuir–Blodgett–Kuhn multilayer films and for liquid crystal alignment switching. Thin Solid Films, 2005, 477, 203-206.	1.8	7
179	Weak Polyelectrolyte Brushes as Substrates for the Formation of Surface-Attached Polyelectrolyteâ´'Polyelectrolyte Complexes and Polyelectrolyte Multilayers. Macromolecules, 2005, 38, 10743-10749.	4.8	22
180	A Versatile Preparation Route for Thin Free-Standing Liquid Single Crystal Elastomers. Macromolecular Rapid Communications, 2005, 26, 813-818.	3.9	60

#	Article	IF	Citations
181	Surface fluctuations of polymer brushes probed by diffuse X-ray scattering. Polymer, 2005, 46, 2331-2337.	3.8	5
182	Towards ultrahydrophobic surfaces: a biomimetic approach. Journal of Physics Condensed Matter, 2005, 17, S639-S648.	1.8	38
183	Drop impact on chemically structured arrays. Journal of Physics Condensed Matter, 2005, 17, S595-S605.	1.8	31
184	Molecular weight determination of an azobenzene-derivatized poly(amic acid) by AFM. Journal of Materials Chemistry, 2005, 15, 4069.	6.7	6
185	Cooperative Diffusion of End-Grafted Polymer Brushes in Good Solvents. Macromolecules, 2005, 38, 8960-8962.	4.8	16
186	Swelling of Poly(methacrylic acid) Brushes:Â Influence of Monovalent Salts in the Environment. Macromolecules, 2005, 38, 4855-4860.	4.8	93
187	On the Formation of Molecular Terraces. Langmuir, 2005, 21, 8250-8254.	3.5	2
188	Modification of Micronozzle Surfaces Using Fluorinated Polymeric Nanofilms for Enhanced Dispensing of Polar and Nonpolar Fluids. Analytical Chemistry, 2005, 77, 6469-6474.	6.5	9
189	Azobenzene-Containing Polyamic Acid with Excellent Langmuirâ 'Blodgettâ' Kuhn Film Formation Behavior Suitable for All-Optical Switching. Langmuir, 2005, 21, 7036-7043.	3.5	9
190	Interaction of Poly(methacrylic acid) Brushes with Metal Ions:Â Swelling Properties. Macromolecules, 2005, 38, 4345-4354.	4.8	117
191	Recent Advances in Polymer Brush Synthesis. , 2005, , 33-50.		2
192	Polymer Brushes by Atom Transfer Radical Polymerization Initiated from Macroinitiator Synthesized on the Surface., 2005,, 69-86.		4
193	Characterization of Polymer Brushes on Nanoparticle Surfaces., 2005,, 213-230.		0
194	Spherical Polyelectrolyte Brushes. , 2005, , 231-248.		2
195	Weak Polyelectrolyte Brushes: Complex Formation and Multilayer Build-up with Oppositely Charged Polyelectrolytes., 2005,, 249-272.		0
196	Polymerization, Nanopatterning and Characterization of Surface-Confined, Stimulus-Responsive Polymer Brushes., 2005,, 381-402.		4
197	Applications of Polymer Brushes and Other Surface-Attached Polymers. , 2005, , 329-370.		0
198	Photoinitiated Polymerization from Self-Assembled Monolayers. , 2005, , 129-150.		4

#	Article	IF	Citations
199	Binding of Oppositely Charged Surfactants to Poly(methacrylic acid) Brushes. Macromolecules, 2005, 38, 6140-6151.	4.8	47
200	Attachment of Polymer Films to Aluminium Surfaces by Photochemically Active Monolayers of Phosphonic Acids. Macromolecular Rapid Communications, 2004, 25, 1396-1401.	3.9	53
201	On the swelling behavior of linear end-grafted polystyrene in methanol/toluene mixtures. Colloid and Polymer Science, 2004, 282, 939-945.	2.1	5
202	Motion of nano-objects on polymer brushes. Polymer, 2004, 45, 8279-8297.	3.8	97
203	Polymeric coatings for biomedical devices. Surface Science, 2004, 570, 111-118.	1.9	65
204	Interaction of Poly(methacrylic acid) Brushes with Metal Ions:Â An Infrared Investigation. Macromolecules, 2004, 37, 6954-6961.	4.8	79
205	A Facile Photochemical Surface Modification Technique for the Generation of Microstructured Fluorinated Surfaces. Langmuir, 2004, 20, 10080-10085.	3.5	76
206	Polyelectrolyte Brushes. Advances in Polymer Science, 2004, , 79-150.	0.8	351
207	Swelling Behavior of Thin, Surface-Attached Polymer Networks. Macromolecules, 2004, 37, 882-887.	4.8	332
208	Interaction of Strong Polyelectrolytes with Surface-Attached Polyelectrolyte Brushesâ^'Polymer Brushes as Substrates for the Layer-by-Layer Deposition of Polyelectrolytes. Macromolecules, 2003, 36, 6593-6598.	4.8	56
209	Polyelectrolyte Multilayers on Weak Polyelectrolyte Brushes. Macromolecular Rapid Communications, 2003, 24, 576-579.	3.9	15
210	Synthesis of a Poly(p-styrenesulfonate) Brush via Surface-Initiated Polymerization. Macromolecules, 2003, 36, 1222-1227.	4.8	29
211	Polymer substrates as a medium for motion of nano objects., 2003,,.		2
212	PHOTOREACTIVE THIN FILMS OF AZOBENZENE-DERIVATIZED POLY(AMIC ACID) AND POLY(IMIDE) LANGMUIR–BLODGETT–KUHN MULTILAYER ASSEMBLIES. Journal of Nonlinear Optical Physics and Materials, 2002, 11, 367-389.	1.8	6
213	Polyelectrolyte Networks Based on Poly(Para-phenylene)s: Synthesis, Preparation of Thin Films, and Swelling Behavior. Soft Materials, 2002, 1, 33-52.	1.7	1
214	FUNCTIONAL POLYMER BRUSHES*. Journal of Macromolecular Science - Reviews in Macromolecular Chemistry and Physics, 2002, 42, 91-138.	2.2	64
215	The Polymer-Supported Phospholipid Bilayer:Â Tethering as a New Approach to Substrateâ^'Membrane Stabilization. Biomacromolecules, 2002, 3, 27-35.	5.4	186
216	Perfluorinated Polymer Monolayers on Porous Silica for Materials with Super Liquid Repellent Properties. Langmuir, 2002, 18, 6133-6139.	3.5	69

#	Article	IF	Citations
217	Polymer Brushes via ATRP: Role of Activator and Deactivator in the Surface-Initiated ATRP of Styrene on Planar Substrates. Macromolecular Rapid Communications, 2002, 23, 277-281.	3.9	108
218	Controlled Growth of PMMA Brushes on Silicon Surfaces at Room Temperature. Macromolecular Rapid Communications, 2002, 23, 612.	3.9	106
219	Surface-attached polymer monolayers for the control of endothelial cell adhesion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 519-526.	4.7	37
220	Grafting of polymers to solid surfaces by using immobilized methacrylates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 198-200, 543-549.	4.7	51
221	Dynamic light scattering from liquid crystal polymer brushes swollen in a nematic solvent. Liquid Crystals, 2001, 28, 1353-1360.	2.2	14
222	Surface attached ultrathin polymer monolayers for control of cell adhesion. Annals of Thoracic Surgery, 2001, 71, S437-S440.	1.3	17
223	Polymer pattern formation on SiO[sub 2] surfaces using surface monolayer initiated polymerization. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 2001, 19, 2013.	1.6	9
224	Surface-attached Polymer Networks. Materials Research Society Symposia Proceedings, 2000, 629, 1.	0.1	2
225	Collapse of Polyelectrolyte Brushes Probed by Noise Analysis of a Scanning Force Microscope Cantilever. Langmuir, 2000, 16, 5774-5784.	3.5	40
226	Repulsive Forces and Relaxation on Compression of Entangled, Polydisperse Polystyrene Brushes. Macromolecules, 2000, 33, 3860-3870.	4.8	77
227	Monolayers of Amphiphilic Block Copolymers via Physisorbed Macroinitiators. Macromolecules, 2000, 33, 4501-4511.	4.8	23
228	Photolithographic structuring of surface-attached polymer monolayers. Materials Science and Engineering C, 1999, 8-9, 291-297.	7.3	39
229	Viscoelastic spectra of soft polymer interfaces obtained by noise analysis of AFM cantilevers. Surface and Interface Analysis, 1999, 27, 572-577.	1.8	16
230	Polyethyloxazoline monolayers for polymer supported biomembrane models. Macromolecular Symposia, 1999, 142, 1-12.	0.7	28
231	Steric Forces Measured with the Atomic Force Microscope at Various Temperatures. Langmuir, 1999, 15, 2559-2565.	3.5	220
232	Segment density profiles of polyelectrolyte brushes determined by Fourier transform ellipsometry. Journal of Chemical Physics, 1999, 111, 7029-7037.	3.0	72
233	Photochemical Attachment of Polymer Films to Solid Surfaces via Monolayers of Benzophenone Derivatives. Journal of the American Chemical Society, 1999, 121, 8766-8770.	13.7	387
234	Tailoring of surfaces with ultrathin polymer films for survival and growth of neurons in culture. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 859-874.	3.5	33

#	Article	IF	CITATIONS
235	Swelling of Thick Polymer Brushes Investigated with Ellipsometry. Langmuir, 1999, 15, 2460-2465.	3.5	101
236	Thickness Dependence of the Solvent-Induced Glass Transition in Polymer Brushes. Macromolecules, 1999, 32, 1244-1251.	4.8	39
237	Polymer Brushes with Liquid Crystalline Side Chains. Macromolecules, 1999, 32, 6759-6766.	4.8	69
238	Phase diagrams of phenyl benzoate side group liquid crystal polymers and similar low molecular mass liquid crystals. Liquid Crystals, 1999, 26, 1655-1661.	2.2	16
239	Microstructuring of Molecularly Thin Polymer Layers by Photolithography. Advanced Materials, 1998, 10, 1073-1077.	21.0	107
240	On the glass transition in ultrathin polymer films of different molecular architecture. Macromolecular Chemistry and Physics, 1998, 199, 1435-1444.	2.2	159
241	Mechanism of Radical Chain Polymerizations Initiated by Azo Compounds Covalently Bound to the Surface of Spherical Particles. Macromolecules, 1998, 31, 602-613.	4.8	416
242	Collapse of a Polymer Brush in a Poor Solvent Probed by Noise Analysis of a Scanning Force Microscope Cantilever. Langmuir, 1998, 14, 3999-4004.	3.5	31
243	Polymer Layers through Self-Assembled Monolayers of Initiators. Langmuir, 1998, 14, 6893-6898.	3.5	262
244	Synthesis of Poly(styrene) Monolayers Attached to High Surface Area Silica Gels through Self-Assembled Monolayers of Azo Initiators. Macromolecules, 1998, 31, 592-601.	4.8	612
245	Glass Transition in Ultrathin Polymer Films. ACS Symposium Series, 1998, , 233-249.	0.5	7
246	Polymers grafted from solid surfaces. Macromolecular Symposia, 1998, 126, 215-222.	0.7	20
247	Polymer-Supported Biomembrane Models. ACS Symposium Series, 1998, , 104-118.	0.5	9
248	Preparation, Structural Characterization and Functional Coupling of Tethered Membranes to Solid Substrates., 1998,, 67-89.		0
249	Static and dynamic profiles of tethered polymer layers probed by analyzing the noise of an atomic force microscope. Physical Review E, 1997, 56, 3256-3264.	2.1	39
250	Swelling of a polymer brush probed with a quartz crystal resonator. Physical Review E, 1997, 56, 680-689.	2.1	158
251	Imaging of polymer monolayers attached to silica surfaces by element specific transmission electron microscopy. Polymer, 1996, 37, 1087-1093.	3.8	21
252	Tailoring of Surfaces with Ultrathin Layers for Controlled Binding of Biopolymers and Adhesion and Guidance of Cells. Israel Journal of Chemistry, 1996, 36, 357-369.	2.3	25

#	Article	IF	CITATIONS
253	Poly(cycloalkyl[c]thiophene)s — syntheses, electrical properties and charge transport mechanism. Macromolecular Chemistry and Physics, 1995, 196, 225-242.	2.2	19
254	Neuronal cells cultured on modified microelectronic device surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1995, 13, 2606-2612.	2.1	35
255	Maßgeschneiderte OberflÃ e hen. Nachrichten Aus Der Chemie, 1994, 42, 1237-1246.	0.0	30
256	The structural background of charge-carrier motion in conducting polymers. Faraday Discussions of the Chemical Society, 1989, 88, 333-349.	2.2	62
257	Conducting Polymers, Polyelectrolytes and Ultrathin Polymer Films in Mainz (FRG). Angewandte Chemie International Edition in English, 1988, 27, 752-752.	4.4	0
258	Synthetic Metalsâ€"Coming of Age But Still Controversial. Angewandte Chemie International Edition in English, 1988, 27, 1583-1584.	4.4	1