
Jacky W Y Lam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/360867/publications.pdf Version: 2024-02-01

LACKY W/YLAM

#	Article	IF	CITATIONS
1	Chiral assembly of organic luminogens with aggregation-induced emission. Chemical Science, 2022, 13, 611-632.	7.4	74
2	<i>In Situ</i> Generation of <i>N</i> -Heteroaromatic Polymers: Metal-Free Multicomponent Polymerization for Photopatterning, Morphological Imaging, and Cr(VI) Sensing. CCS Chemistry, 2022, 4, 2308-2320.	7.8	9
3	Endowing AIE with Extraordinary Potential: A New Au(I)â€Containing AIEgen for Bimodal Bioimagingâ€Guided Multimodal Synergistic Cancer Therapy. Advanced Functional Materials, 2022, 32, 2108199.	14.9	9
4	Metalâ€Based Aggregationâ€Induced Emission Theranostic Systems. ChemMedChem, 2022, 17, .	3.2	12
5	Organic Long-Persistent Luminescence from a Single-Component Aggregate. Journal of the American Chemical Society, 2022, 144, 3050-3062.	13.7	61
6	A ratiometric theranostic system for visualization of ONOO ^{â^'} species and reduction of drug-induced hepatotoxicity. Biomaterials Science, 2022, 10, 1083-1089.	5.4	12
7	Novel Quinolizine AIE System: Visualization of Molecular Motion and Elaborate Tailoring for Biological Application**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	31
8	One-step light-up metabolic probes for <i>in situ</i> discrimination and killing of intracellular bacteria. Materials Chemistry Frontiers, 2022, 6, 450-458.	5.9	8
9	Evoking Highly Immunogenic Ferroptosis Aided by Intramolecular Motionâ€Induced Photoâ€Hyperthermia for Cancer Therapy. Advanced Science, 2022, 9, e2104885.	11.2	34
10	Oneâ€Pot Synthesis of Customized Metal–Phenolicâ€Networkâ€Coated AIE Dots for In Vivo Bioimaging. Advanced Science, 2022, 9, e2104997.	11.2	20
11	Molecular Crystal Engineering of Organic Chromophores for NIR-II Fluorescence Quantification of Cerebrovascular Function. ACS Nano, 2022, 16, 3323-3331.	14.6	12
12	Aggregation-Induced Emission Luminogens for Cell Death Research. ACS Bio & Med Chem Au, 2022, 2, 236-257.	3.7	14
13	Click Synthesis Enabled Sulfur Atom Strategy for Polymerizationâ€Enhanced and Twoâ€Photon Photosensitization. Angewandte Chemie - International Edition, 2022, 61, .	13.8	26
14	In-situ generation of poly(quinolizine)s via catalyst-free polyannulations of activated diyne and pyridines. Science China Chemistry, 2022, 65, 789-795.	8.2	2
15	Aggregation-Induced Emission (AIE) in Super-resolution Imaging: Cationic AIE Luminogens (AIEgens) for Tunable Organelle-Specific Imaging and Dynamic Tracking in Nanometer Scale. ACS Nano, 2022, 16, 5932-5942.	14.6	26
16	Oxygen Quenching-Resistant Nanoaggregates with Aggregation-Induced Delayed Fluorescence for Time-Resolved Mapping of Intracellular Microviscosity. ACS Nano, 2022, 16, 6176-6184.	14.6	7
17	A mitochondria-targeted AIE photosensitizer for enhancing specificity and efficacy of ferroptosis inducer. Science China Chemistry, 2022, 65, 870-876.	8.2	12
18	Solutionâ€processed AIEgen NIR OLEDs with EQE Approaching 15 %. Angewandte Chemie, 2022, 134, .	2.0	5

#	Article	IF	CITATIONS
19	Through-Space Interaction of Tetraphenylethylene: What, Where, and How. Journal of the American Chemical Society, 2022, 144, 7901-7910.	13.7	72
20	Molecular Motion and Nonradiative Decay: Towards Efficient Photothermal and Photoacoustic Systems. Angewandte Chemie - International Edition, 2022, 61, .	13.8	88
21	Molecular Motion and Nonradiative Decay: Towards Efficient Photothermal and Photoacoustic Systems. Angewandte Chemie, 2022, 134, .	2.0	9
22	Multifaceted Cargo Recruitment and Release from Artificial Membraneless Organelles. Small, 2022, 18,	10.0	21
23	Diversity-Oriented Synthesis of Functional Polymers with Multisubstituted Small Heterocycles by Facile Stereoselective Multicomponent Polymerizations. Macromolecules, 2022, 55, 4389-4401.	4.8	4
24	Secondary through-space interactions facilitated single-molecule white-light emission from clusteroluminogens. Nature Communications, 2022, 13, .	12.8	50
25	Structural and process controls of AIEgens for NIR-II theranostics. Chemical Science, 2021, 12, 3427-3436.	7.4	169
26	Mechanistic connotations of restriction of intramolecular motions (RIM). National Science Review, 2021, 8, nwaa260.	9.5	119
27	Unusual light-driven amplification through unexpected regioselective photogeneration of five-membered azaheterocyclic AlEgen. Chemical Science, 2021, 12, 709-717.	7.4	23
28	Turning On Solidâ€State Luminescence by Phototriggered Subtle Molecular Conformation Variations. Advanced Materials, 2021, 33, e2006844.	21.0	67
29	Enantiomeric Switching of the Circularly Polarized Luminescence Processes in a Hierarchical Biomimetic System by Film Tilting. ACS Nano, 2021, 15, 1397-1406.	14.6	31
30	Robust Supramolecular Nanoâ€Tunnels Built from Molecular Bricks**. Angewandte Chemie - International Edition, 2021, 60, 7148-7154.	13.8	28
31	AlEgens for microbial detection and antimicrobial therapy. Biomaterials, 2021, 268, 120598.	11.4	86
32	Robust Supramolecular Nanoâ€Tunnels Built from Molecular Bricks**. Angewandte Chemie, 2021, 133, 7224-7230.	2.0	4
33	Functional Heterochain Polymers Constructed by Alkyne Multicomponent Polymerizations. Macromolecular Rapid Communications, 2021, 42, 2000386.	3.9	19
34	Hydrazine Detection during Ammonia Electro-oxidation Using an Aggregation-Induced Emission Dye. Journal of the American Chemical Society, 2021, 143, 2433-2440.	13.7	41
35	A biocompatible dual-AIEgen system without spectral overlap for quantitation of microbial viability and monitoring of biofilm formation. Materials Horizons, 2021, 8, 1816-1824.	12.2	7
36	Restriction of Intramolecular Motion(RIM): Investigating AIE Mechanism from Experimental and Theoretical Studies. Chemical Research in Chinese Universities, 2021, 37, 1-15.	2.6	81

#	Article	IF	CITATIONS
37	Diagnosis of fatty liver disease by a multiphoton-active and lipid-droplet-specific AIEgen with nonaromatic rotors. Materials Chemistry Frontiers, 2021, 5, 1853-1862.	5.9	22
38	Revisiting an ancient inorganic aggregationâ€induced emission system: An enlightenment to clusteroluminescence. Aggregate, 2021, 2, e36.	9.9	40
39	Turning on Light Emission of a Dark Proâ€Aggregationâ€Induced Emission Luminogen in Aqueous Media Through Reductaseâ€Modulated Derotation. Advanced NanoBiomed Research, 2021, 1, 2000080.	3.6	12
40	Facilitation of molecular motion to develop turn-on photoacoustic bioprobe for detecting nitric oxide in encephalitis. Nature Communications, 2021, 12, 960.	12.8	62
41	Catalyst-Free Spontaneous Polymerization with 100% Atom Economy: Facile Synthesis of Photoresponsive Polysulfonates with Multifunctionalities. Jacs Au, 2021, 1, 344-353.	7.9	14
42	Biologically Excretable Aggregationâ€Induced Emission Dots for Visualizing Through the Marmosets Intravitally: Horizons in Future Clinical Nanomedicine. Advanced Materials, 2021, 33, e2008123.	21.0	63
43	Functionalization of Silk by AlEgens through Facile Bioconjugation: Fullâ€Color Fluorescence and Longâ€Term Bioimaging. Angewandte Chemie, 2021, 133, 12532-12538.	2.0	6
44	Functionalization of Silk by AlEgens through Facile Bioconjugation: Fullâ€Color Fluorescence and Longâ€Term Bioimaging. Angewandte Chemie - International Edition, 2021, 60, 12424-12430.	13.8	46
45	Bioinspired Hydrogels with Muscle-Like Structure for AlEgen-Guided Selective Self-Healing. CCS Chemistry, 2021, 3, 1146-1156.	7.8	42
46	Positive/Negative Phototropism: Controllable Molecular Actuators with Different Bending Behavior. CCS Chemistry, 2021, 3, 1491-1500.	7.8	27
47	Photoresponsive Polymers with Aggregation-Induced Emission. ACS Applied Polymer Materials, 2021, 3, 2290-2309.	4.4	40
48	Making Aggregation-Induced Emission Luminogen More Valuable by Gold: Enhancing Anticancer Efficacy by Suppressing Thioredoxin Reductase Activity. ACS Nano, 2021, 15, 9176-9185.	14.6	41
49	"Simple―Aggregationâ€Induced Emission Luminogens for Nondoped Solutionâ€Processed Organic Lightâ€Emitting Diodes with Emission Close to Pure Red in the Standard Red, Green, and Blue Gamut. Advanced Photonics Research, 2021, 2, 2100004.	3.6	2
50	Enlarging the Reservoir: High Absorption Coefficient Dyes Enable Synergetic Near Infraredâ€I Fluorescence Imaging and Near Infraredâ€I Photothermal Therapy. Advanced Functional Materials, 2021, 31, 2102213.	14.9	47
51	An Air-Stable Organic Radical from a Controllable Photoinduced Domino Reaction of a Hexa-aryl Substituted Anthracene. Journal of Organic Chemistry, 2021, 86, 7359-7369.	3.2	5
52	Visualization and Manipulation of Solid-State Molecular Motions in Cocrystallization Processes. Journal of the American Chemical Society, 2021, 143, 9468-9477.	13.7	52
53	How to Manipulate Through-Space Conjugation and Clusteroluminescence of Simple AlEgens with Isolated Phenyl Rings. Journal of the American Chemical Society, 2021, 143, 9565-9574.	13.7	97
54	Stimuliâ€Responsive AlEgens. Advanced Materials, 2021, 33, e2008071.	21.0	178

#	Article	IF	CITATIONS
55	Mitochondria-Specific Aggregation-Induced Emission Luminogens for Selective Photodynamic Killing of Fungi and Efficacious Treatment of Keratitis. ACS Nano, 2021, 15, 12129-12139.	14.6	46
56	Cobaltâ€Mediated Switchable Catalysis for the Oneâ€Pot Synthesis of Cyclic Polymers. Angewandte Chemie - International Edition, 2021, 60, 16974-16979.	13.8	23
57	Innenrücktitelbild: Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic Biopatterning (Angew. Chem. 35/2021). Angewandte Chemie, 2021, 133, 19643-19643.	2.0	0
58	Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic Biopatterning. Angewandte Chemie, 2021, 133, 19371-19380.	2.0	2
59	Heteroaromatic Hyperbranched Polyelectrolytes: Multicomponent Polyannulation and Photodynamic Biopatterning. Angewandte Chemie - International Edition, 2021, 60, 19222-19231.	13.8	29
60	Real-Time Visualization and Monitoring of Physiological Dynamics by Aggregation-Induced Emission Luminogens (AlEgens). Annual Review of Analytical Chemistry, 2021, 14, 413-435.	5.4	8
61	Cobaltâ€Mediated Switchable Catalysis for the Oneâ€Pot Synthesis of Cyclic Polymers. Angewandte Chemie, 2021, 133, 17111-17116.	2.0	7
62	How Do Molecular Motions Affect Structures and Properties at Molecule and Aggregate Levels?. Journal of the American Chemical Society, 2021, 143, 11820-11827.	13.7	26
63	Side Areaâ€Assisted 3D Evaporator with Antibiofouling Function for Ultraâ€Efficient Solar Steam Generation. Advanced Materials, 2021, 33, e2102258.	21.0	79
64	Hydrophilicityâ€Hydrophobicity Transformation, Thermoresponsive Morphomechanics, and Crack Multifurcation Revealed by AlEgens in Mechanically Strong Hydrogels. Advanced Materials, 2021, 33, e2101500.	21.0	46
65	<scp>Photodegradationâ€Induced Turnâ€On</scp> Luminescence of <scp>Tetraphenylethyleneâ€Based</scp> Trithiocarbonate Polymers ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2837-2842.	4.9	4
66	Recent Advances in Aggregationâ€Induced Emission Materials and Their Biomedical and Healthcare Applications. Advanced Healthcare Materials, 2021, 10, e2101055.	7.6	36
67	Sensitive and specific detection of peroxynitrite and <i>in vivo</i> imaging of inflammation by a "simple―AlE bioprobe. Materials Chemistry Frontiers, 2021, 5, 1830-1835.	5.9	19
68	Phototriggered Aggregationâ€Induced Emission and Direct Generation of 4D Soft Patterns. Advanced Materials, 2021, 33, e2105113.	21.0	40
69	In Situ Generation of Heterocyclic Polymers by Tripleâ€Bond Based Polymerizations. Macromolecular Rapid Communications, 2021, 42, e2100524.	3.9	1
70	Vision redemption: Self-reporting AlEgens for combined treatment of bacterial keratitis. Biomaterials, 2021, 279, 121227.	11.4	15
71	Boosting Cyanobacteria Growth by Fivefold with Aggregation-Induced Emission Luminogens: Toward the Development of a Biofactory. ACS Sustainable Chemistry and Engineering, 2021, 9, 15258-15266.	6.7	9
72	White-light emission from organic aggregates: a review. Advanced Photonics, 2021, 4, .	11.8	25

#	Article	IF	CITATIONS
73	Unusual Throughâ€5pace Interactions between Oxygen Atoms that Mediate Inverse Morphochromism of an AIE Luminogen. Angewandte Chemie - International Edition, 2020, 59, 8552-8559.	13.8	28
74	Timeâ€Dependent Photodynamic Therapy for Multiple Targets: A Highly Efficient AIEâ€Active Photosensitizer for Selective Bacterial Elimination and Cancer Cell Ablation. Angewandte Chemie - International Edition, 2020, 59, 9470-9477.	13.8	153
75	Timeâ€Dependent Photodynamic Therapy for Multiple Targets: A Highly Efficient AIEâ€Active Photosensitizer for Selective Bacterial Elimination and Cancer Cell Ablation. Angewandte Chemie, 2020, 132, 9557-9564.	2.0	22
76	Unusual Through‧pace Interactions between Oxygen Atoms that Mediate Inverse Morphochromism of an AIE Luminogen. Angewandte Chemie, 2020, 132, 8630-8637.	2.0	5
77	New AlE-Active Copolymers with Au(I) Isocyanide Acrylate Units. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 1490-1496.	3.7	4
78	A "simple―donor–acceptor AlEgen with multi-stimuli responsive behavior. Materials Horizons, 2020, 7, 135-142.	12.2	77
79	Ultrafast discrimination of Gram-positive bacteria and highly efficient photodynamic antibacterial therapy using near-infrared photosensitizer with aggregation-induced emission characteristics. Biomaterials, 2020, 230, 119582.	11.4	91
80	New Wine in Old Bottles: Prolonging Roomâ€Temperature Phosphorescence of Crown Ethers by Supramolecular Interactions. Angewandte Chemie, 2020, 132, 9379-9384.	2.0	14
81	New Wine in Old Bottles: Prolonging Roomâ€Temperature Phosphorescence of Crown Ethers by Supramolecular Interactions. Angewandte Chemie - International Edition, 2020, 59, 9293-9298.	13.8	105
82	Polymorph selectivity of an AIE luminogen under nano-confinement to visualize polymer microstructures. Chemical Science, 2020, 11, 997-1005.	7.4	46
83	Constitutional Isomerization Enables Bright NIRâ€II AlEgen for Brainâ€Inflammation Imaging. Advanced Functional Materials, 2020, 30, 1908125.	14.9	175
84	Manipulating Solid-State Intramolecular Motion toward Controlled Fluorescence Patterns. ACS Nano, 2020, 14, 2090-2098.	14.6	57
85	Highly efficient phototheranostics of macrophage-engulfed Gram-positive bacteria using a NIR luminogen with aggregation-induced emission characteristics. Biomaterials, 2020, 261, 120340.	11.4	39
86	Incorporation of Planar Blocks into Twisted Skeletons: Boosting Brightness of Fluorophores for Bioimaging beyond 1500 Nanometer. ACS Nano, 2020, 14, 14228-14239.	14.6	78
87	Making the Best Use of Excited-State Energy: Multimodality Theranostic Systems Based on Second Near-Infrared (NIR-II) Aggregation-Induced Emission Luminogens (AlEgens). , 2020, 2, 1033-1040.		60
88	Deciphering Structure–Functionality Relationship of Polycarbonate-Based Polyelectrolytes by AIE Technology. Macromolecules, 2020, 53, 5839-5846.	4.8	16
89	Reverse Thinking of the Aggregationâ€Induced Emission Principle: Amplifying Molecular Motions to Boost Photothermal Efficiency of Nanofibers**. Angewandte Chemie - International Edition, 2020, 59, 20371-20375.	13.8	72
90	Reverse Thinking of the Aggregationâ€Induced Emission Principle: Amplifying Molecular Motions to Boost Photothermal Efficiency of Nanofibers**. Angewandte Chemie, 2020, 132, 20551-20555.	2.0	6

#	Article	IF	CITATIONS
91	Molecular Motions in AlEgen Crystals: Turning on Photoluminescence by Force-Induced Filament Sliding. Journal of the American Chemical Society, 2020, 142, 14608-14618.	13.7	62
92	Aggregate Science: From Structures to Properties. Advanced Materials, 2020, 32, e2001457.	21.0	254
93	Planar and Twisted Molecular Structure Leads to the High Brightness of Semiconducting Polymer Nanoparticles for NIR-IIa Fluorescence Imaging. Journal of the American Chemical Society, 2020, 142, 15146-15156.	13.7	177
94	Simultaneously boosting the conjugation, brightness and solubility of organic fluorophores by using AlEgens. Chemical Science, 2020, 11, 8438-8447.	7.4	32
95	Nearâ€Infrared AIE Dots with Chemiluminescence for Deepâ€Tissue Imaging. Advanced Materials, 2020, 32, e2004685.	21.0	96
96	Aggregationâ€Induced Emission Luminogens for Direct Exfoliation of 2D Layered Materials in Ethanol. Advanced Materials Interfaces, 2020, 7, 2000795.	3.7	5
97	Substitution Activated Precise Phototheranostics through Supramolecular Assembly of AIEgen and Calixarene. Journal of the American Chemical Society, 2020, 142, 15966-15974.	13.7	102
98	Aggregationâ€induced emission luminogen: A new perspective in the photoâ€degradation of organic pollutants. EcoMat, 2020, 2, e12024.	11.9	14
99	Catalyst-Free Multicomponent Tandem Polymerizations of Alkyne and Amines toward Nontraditional Intrinsic Luminescent Poly(aminomaleimide)s. Macromolecules, 2020, 53, 3756-3764.	4.8	34
100	ACQâ€ŧoâ€AIE Transformation: Tuning Molecular Packing by Regioisomerization for Twoâ€₽hoton NIR Bioimaging. Angewandte Chemie - International Edition, 2020, 59, 12822-12826.	13.8	131
101	ACQâ€ŧoâ€AIE Transformation: Tuning Molecular Packing by Regioisomerization for Twoâ€Photon NIR Bioimaging. Angewandte Chemie, 2020, 132, 12922-12926.	2.0	25
102	Multifunctional Supramolecular Assemblies with Aggregation-Induced Emission (AIE) for Cell Line Identification, Cell Contamination Evaluation, and Cancer Cell Discrimination. ACS Nano, 2020, 14, 7552-7563.	14.6	59
103	Visualizing semipermeability of the cell membrane using a pH-responsive ratiometric AIEgen. Chemical Science, 2020, 11, 5753-5758.	7.4	26
104	Tuning molecular emission of organic emitters from fluorescence to phosphorescence through push-pull electronic effects. Nature Communications, 2020, 11, 2617.	12.8	117
105	Evoking Photothermy by Capturing Intramolecular Bond Stretching Vibration-Induced Dark-State Energy. ACS Nano, 2020, 14, 4265-4275.	14.6	53
106	Design of AIEgens for near-infrared IIb imaging through structural modulation at molecular and morphological levels. Nature Communications, 2020, 11, 1255.	12.8	283
107	"Living―luminogens: light driven ACQ-to-AIE transformation accompanied with solid-state actuation. Materials Horizons, 2020, 7, 1566-1572.	12.2	71
108	AlEgens: An emerging fluorescent sensing tool to aid food safety and quality control. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 2297-2329.	11.7	39

#	Article	IF	CITATIONS
109	Single AlEgen for multiple tasks: Imaging of dual organelles and evaluation of cell viability. Biomaterials, 2020, 242, 119924.	11.4	46
110	Aggregationsinduzierte Emission: Einblicke auf Aggregatebene. Angewandte Chemie, 2020, 132, 9972-9993.	2.0	96
111	Threeâ€Pronged Attack by Homologous Farâ€red/NIR AlEgens to Achieve 1+1+1>3 Synergistic Enhanced Photodynamic Therapy. Angewandte Chemie, 2020, 132, 9697-9703.	2.0	22
112	Threeâ€Pronged Attack by Homologous Farâ€red/NIR AlEgens to Achieve 1+1+1>3 Synergistic Enhanced Photodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 9610-9616.	13.8	146
113	Aggregationâ€Induced Emission: New Vistas at the Aggregate Level. Angewandte Chemie - International Edition, 2020, 59, 9888-9907.	13.8	821
114	<i>In vivo</i> monitoring of tissue regeneration using a ratiometric lysosomal AIE probe. Chemical Science, 2020, 11, 3152-3163.	7.4	52
115	Multifunctional Au I â€based AlEgens: Manipulating Molecular Structures and Boosting Specific Cancer Cell Imaging and Theranostics. Angewandte Chemie, 2020, 132, 7163-7171.	2.0	17
116	Highly Stable and Bright NIR-II AIE Dots for Intraoperative Identification of Ureter. ACS Applied Materials & Interfaces, 2020, 12, 8040-8049.	8.0	50
117	A lipophilic AlEgen for lipid droplet imaging and evaluation of the efficacy of HIF-1 targeting drugs. Journal of Materials Chemistry B, 2020, 8, 1516-1523.	5.8	34
118	Phage-Guided Targeting, Discriminative Imaging, and Synergistic Killing of Bacteria by AIE Bioconjugates. Journal of the American Chemical Society, 2020, 142, 3959-3969.	13.7	143
119	Less is more: Silver-AIE core@shell nanoparticles for multimodality cancer imaging and synergistic therapy. Biomaterials, 2020, 238, 119834.	11.4	48
120	Red AIEâ€Active Fluorescent Probes with Tunable Organelleâ€Specific Targeting. Advanced Functional Materials, 2020, 30, 1909268.	14.9	85
121	Highly efficient singlet oxygen generation, two-photon photodynamic therapy and melanoma ablation by rationally designed mitochondria-specific near-infrared AlEgens. Chemical Science, 2020, 11, 2494-2503.	7.4	131
122	Bioinspired Simultaneous Changes in Fluorescence Color, Brightness, and Shape of Hydrogels Enabled by AlEgens. Advanced Materials, 2020, 32, e1906493.	21.0	160
123	Facile Synthesis of Efficient Luminogens with AIE Features for Threeâ€Photon Fluorescence Imaging of the Brain through the Intact Skull. Advanced Materials, 2020, 32, e2000364.	21.0	103
124	Cancer cell discrimination and dynamic viability monitoring through wash-free bioimaging using AlEgens. Chemical Science, 2020, 11, 7676-7684.	7.4	45
125	Dragonfly-shaped near-infrared AIEgen with optimal fluorescence brightness for precise image-guided cancer surgery. Biomaterials, 2020, 248, 120036.	11.4	71
126	Killing G(+) or G(â^') Bacteria? The Important Role of Molecular Charge in AIEâ€Active Photosensitizers. Small Methods, 2020, 4, 2000046.	8.6	114

#	Article	IF	CITATIONS
127	Two Are Better Than One: A Design Principle for Ultralongâ€Persistent Luminescence of Pure Organics. Advanced Materials, 2020, 32, e2001026.	21.0	164
128	One stone, three birds: one AIEgen with three colors for fast differentiation of three pathogens. Chemical Science, 2020, 11, 4730-4740.	7.4	59
129	Multifunctional Au ^I â€based AlEgens: Manipulating Molecular Structures and Boosting Specific Cancer Cell Imaging and Theranostics. Angewandte Chemie - International Edition, 2020, 59, 7097-7105.	13.8	49
130	Facile Synthesis of Functional Processable Fluoropolydienes by Alkyne-Based Multicomponent Polycouplings. Macromolecules, 2020, 53, 9859-9868.	4.8	4
131	Circularly polarized luminescence from AIEgens. Journal of Materials Chemistry C, 2020, 8, 3284-3301.	5.5	141
132	Visualizing and monitoring interface structures and dynamics by luminogens with aggregation-induced emission. Journal of Applied Physics, 2019, 126, 050901.	2.5	19
133	Restriction of Access to the Dark State: A New Mechanistic Model for Heteroatomâ€Containing AlE Systems. Angewandte Chemie, 2019, 131, 15053-15056.	2.0	34
134	Sparks fly when AIE meets with polymers. Materials Chemistry Frontiers, 2019, 3, 2207-2220.	5.9	68
135	A Functioning Macroscopic "Rubik's Cube―Assembled via Controllable Dynamic Covalent Interactions. Advanced Materials, 2019, 31, e1902365.	21.0	84
136	Tunable circularly polarized luminescence from molecular assemblies of chiral AIEgens. Materials Chemistry Frontiers, 2019, 3, 1768-1778.	5.9	74
137	Tailoring the Molecular Properties with Isomerism Effect of AlEgens. Advanced Functional Materials, 2019, 29, 1903834.	14.9	31
138	Restriction of Access to the Dark State: A New Mechanistic Model for Heteroatom ontaining AIE Systems. Angewandte Chemie - International Edition, 2019, 58, 14911-14914.	13.8	130
139	Non-aromatic annulene-based aggregation-induced emission system via aromaticity reversal process. Nature Communications, 2019, 10, 2952.	12.8	125
140	Aggregationâ€Induced Nonlinear Optical Effects of AlEgen Nanocrystals for Ultradeep In Vivo Bioimaging. Advanced Materials, 2019, 31, e1904799.	21.0	126
141	Visualization and Manipulation of Molecular Motion in the Solid State through Photoinduced Clusteroluminescence. Journal of Physical Chemistry Letters, 2019, 10, 7077-7085.	4.6	50
142	Supramolecular Polymerization with Dynamic Self-Sorting Sequence Control. Macromolecules, 2019, 52, 8814-8825.	4.8	40
143	Hydrogels: A Functioning Macroscopic "Rubik's Cube―Assembled via Controllable Dynamic Covalent Interactions (Adv. Mater. 40/2019). Advanced Materials, 2019, 31, 1970286.	21.0	0
144	Three-Component Regio- and Stereoselective Polymerizations toward Functional Chalcogen-Rich Polymers with AIE-Activities. Journal of the American Chemical Society, 2019, 141, 14712-14719.	13.7	47

#	Article	IF	CITATIONS
145	Molecular Motion in the Solid State. , 2019, 1, 425-431.		71
146	Tuning Organelle Specificity and Photodynamic Therapy Efficiency by Molecular Function Design. ACS Nano, 2019, 13, 11283-11293.	14.6	199
147	Super-Resolution Visualization of Self-Assembling Helical Fibers Using Aggregation-Induced Emission Luminogens in Stimulated Emission Depletion Nanoscopy. ACS Nano, 2019, 13, 11863-11873.	14.6	45
148	Aggregation-induced emission: fundamental understanding and future developments. Materials Horizons, 2019, 6, 428-433.	12.2	564
149	Pyrene-based blue emitters with aggregation-induced emission features for high-performance organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 2283-2290.	5.5	78
150	Facile emission color tuning and circularly polarized light generation of single luminogen in engineering robust forms. Materials Horizons, 2019, 6, 405-411.	12.2	41
151	Spontaneous and Fast Molecular Motion at Room Temperature in the Solid State. Angewandte Chemie, 2019, 131, 4584-4588.	2.0	14
152	Spontaneous and Fast Molecular Motion at Room Temperature in the Solid State. Angewandte Chemie - International Edition, 2019, 58, 4536-4540.	13.8	87
153	Molecular Transmission: Visible and Rate-Controllable Photoreactivity and Synergy of Aggregation-Induced Emission and Host–Guest Assembly. Chemistry of Materials, 2019, 31, 1092-1100.	6.7	46
154	A New Strategy toward "Simple―Waterâ€Soluble AIE Probes for Hypoxia Detection. Advanced Functional Materials, 2019, 29, 1903278.	14.9	58
155	<i>In Situ</i> Generation of Azonia-Containing Polyelectrolytes for Luminescent Photopatterning and Superbug Killing. Journal of the American Chemical Society, 2019, 141, 11259-11268.	13.7	78
156	A smart AlEgen-functionalized surface with reversible modulation of fluorescence and wettability. Materials Horizons, 2019, 6, 2032-2039.	12.2	19
157	Structure, Assembly, and Function of (Latent)-Chiral AlEgens. , 2019, 1, 192-202.		70
158	Visualization of Biogenic Amines and In Vivo Ratiometric Mapping of Intestinal pH by AlEâ€Active Polyheterocycles Synthesized by Metalâ€Free Multicomponent Polymerizations. Advanced Functional Materials, 2019, 29, 1902240.	14.9	75
159	Ratiometric Detection of Mitochondrial Thiol with a Two-Photon Active AlEgen. ACS Applied Bio Materials, 2019, 2, 3120-3127.	4.6	26
160	A highly efficient and AIE-active theranostic agent from natural herbs. Materials Chemistry Frontiers, 2019, 3, 1454-1461.	5.9	82
161	Pyrene-based aggregation-induced emission luminogens (AIEgen): structure correlated with particle size distribution and mechanochromism. Journal of Materials Chemistry C, 2019, 7, 6932-6940.	5.5	53
162	Creation of Efficient Blue Aggregation-Induced Emission Luminogens for High-Performance Nondoped Blue OLEDs and Hybrid White OLEDs. ACS Applied Materials & Interfaces, 2019, 11, 17592-17601.	8.0	93

#	Article	IF	CITATIONS
163	Drawing a clear mechanistic picture for the aggregation-induced emission process. Materials Chemistry Frontiers, 2019, 3, 1143-1150.	5.9	64
164	Real-Time Monitoring of Hierarchical Self-Assembly and Induction of Circularly Polarized Luminescence from Achiral Luminogens. ACS Nano, 2019, 13, 3618-3628.	14.6	157
165	Boosting Nonâ€Radiative Decay to Do Useful Work: Development of a Multiâ€Modality Theranostic System from an AlEgen. Angewandte Chemie, 2019, 131, 5684-5688.	2.0	46
166	AIE Featured Inorganic–Organic Core@Shell Nanoparticles for High-Efficiency siRNA Delivery and Real-Time Monitoring. Nano Letters, 2019, 19, 2272-2279.	9.1	58
167	Boosting Nonâ€Radiative Decay to Do Useful Work: Development of a Multiâ€Modality Theranostic System from an AlEgen. Angewandte Chemie - International Edition, 2019, 58, 5628-5632.	13.8	180
168	In Situ Monitoring Apoptosis Process by a Self-Reporting Photosensitizer. Journal of the American Chemical Society, 2019, 141, 5612-5616.	13.7	196
169	Molecular Motion in Aggregates: Manipulating TICT for Boosting Photothermal Theranostics. Journal of the American Chemical Society, 2019, 141, 5359-5368.	13.7	465
170	Boosting the efficiency of organic persistent room-temperature phosphorescence by intramolecular triplet-triplet energy transfer. Nature Communications, 2019, 10, 1595.	12.8	194
171	Highly photostable two-photon NIR AIEgens with tunable organelle specificity and deep tissue penetration. Biomaterials, 2019, 208, 72-82.	11.4	82
172	Facile synthesis of AIEgens with wide color tunability for cellular imaging and therapy. Chemical Science, 2019, 10, 3494-3501.	7.4	112
173	Recent Progress in AIE-active Polymers. Chinese Journal of Polymer Science (English Edition), 2019, 37, 289-301.	3.8	77
174	Amphiphilic Tetraphenylethene-Based Pyridinium Salt for Selective Cell-Membrane Imaging and Room-Light-Induced Special Reactive Oxygen Species Generation. ACS Applied Materials & Interfaces, 2019, 11, 10567-10577.	8.0	79
175	Highly efficient photothermal nanoagent achieved by harvesting energy via excited-state intramolecular motion within nanoparticles. Nature Communications, 2019, 10, 768.	12.8	296
176	Ultralong UV/mechano-excited room temperature phosphorescence from purely organic cluster excitons. Nature Communications, 2019, 10, 5161.	12.8	216
177	SwissKnife-Inspired Multifunctional Fluorescence Probes for Cellular Organelle Targeting Based on Simple AIEgens. Analytical Chemistry, 2019, 91, 2169-2176.	6.5	40
178	Engineering Sensor Arrays Using Aggregationâ€Induced Emission Luminogens for Pathogen Identification. Advanced Functional Materials, 2019, 29, 1805986.	14.9	122
179	Aggregationâ€Induced Delayed Fluorescence Luminogens for Efficient Organic Lightâ€Emitting Diodes. Chemistry - an Asian Journal, 2019, 14, 828-835.	3.3	31
180	Visualizing the Initial Step of Self-Assembly and the Phase Transition by Stereogenic Amphiphiles with Aggregation-Induced Emission. ACS Nano, 2019, 13, 839-846.	14.6	77

#	Article	IF	CITATIONS
181	1 + 1 >> 2: Dramatically Enhancing the Emission Efficiency of TPEâ€Based AlEgens but Keeping their Emission Color through Tailored Alkyl Linkages. Advanced Functional Materials, 2018, 28, 1707210.	14.9	73
182	An Easily Accessible Ionic Aggregationâ€Induced Emission Luminogen with Hydrogenâ€Bondingâ€Switchable Emission and Washâ€Free Imaging Ability. Angewandte Chemie - International Edition, 2018, 57, 5011-5015.	13.8	73
183	Highly Efficient Circularly Polarized Electroluminescence from Aggregationâ€Induced Emission Luminogens with Amplified Chirality and Delayed Fluorescence. Advanced Functional Materials, 2018, 28, 1800051.	14.9	302
184	Deciphering the working mechanism of aggregation-induced emission of tetraphenylethylene derivatives by ultrafast spectroscopy. Chemical Science, 2018, 9, 4662-4670.	7.4	150
185	Fluorogenic Ag ⁺ –Tetrazolate Aggregation Enables Efficient Fluorescent Biological Silver Staining. Angewandte Chemie - International Edition, 2018, 57, 5750-5753.	13.8	75
186	Fluorogenic Ag ⁺ –Tetrazolate Aggregation Enables Efficient Fluorescent Biological Silver Staining. Angewandte Chemie, 2018, 130, 5852-5855.	2.0	8
187	Facile Multicomponent Polymerizations toward Unconventional Luminescent Polymers with Readily Openable Small Heterocycles. Journal of the American Chemical Society, 2018, 140, 5588-5598.	13.7	116
188	In Situ Monitoring of RAFT Polymerization by Tetraphenylethyleneâ€Containing Agents with Aggregationâ€Induced Emission Characteristics. Angewandte Chemie - International Edition, 2018, 57, 6274-6278.	13.8	145
189	Ultrabright red AIEgens for two-photon vascular imaging with high resolution and deep penetration. Chemical Science, 2018, 9, 2705-2710.	7.4	98
190	Rational Design of Perylenediimideâ€Substituted Triphenylethylene to Electron Transporting Aggregationâ€Induced Emission Luminogens (AlEgens) with High Mobility and Nearâ€Infrared Emission. Advanced Functional Materials, 2018, 28, 1705609.	14.9	82
191	Realâ€Time and Highâ€Resolution Bioimaging with Bright Aggregationâ€Induced Emission Dots in Shortâ€Wave Infrared Region. Advanced Materials, 2018, 30, e1706856.	21.0	341
192	Reversible Thermalâ€Induced Fluorescence Color Change of Tetraphenylethyleneâ€Labeled Nylonâ€6. Advanced Optical Materials, 2018, 6, 1701149.	7.3	22
193	Mechanochromism: Multifunctional AlEgens: Ready Synthesis, Tunable Emission, Mechanochromism, Mitochondrial, and Bacterial Imaging (Adv. Funct. Mater. 1/2018). Advanced Functional Materials, 2018, 28, 1870006.	14.9	1
194	In Situ Monitoring of RAFT Polymerization by Tetraphenylethyleneâ€Containing Agents with Aggregationâ€Induced Emission Characteristics. Angewandte Chemie, 2018, 130, 6382-6386.	2.0	24
195	An Easily Accessible Ionic Aggregationâ€Induced Emission Luminogen with Hydrogenâ€Bondingâ€Switchable Emission and Washâ€Free Imaging Ability. Angewandte Chemie, 2018, 130, 5105-5109.	2.0	63
196	Rational design of a water-soluble NIR AIEgen, and its application in ultrafast wash-free cellular imaging and photodynamic cancer cell ablation. Chemical Science, 2018, 9, 3685-3693.	7.4	343
197	White-Light Emission of a Binary Light-Harvesting Platform Based on an Amphiphilic Organic Cage. Chemistry of Materials, 2018, 30, 1285-1290.	6.7	98
198	Malonitrileâ€Functionalized Tetraphenylpyrazine: Aggregationâ€Induced Emission, Ratiometric Detection of Hydrogen Sulfide, and Mechanochromism. Advanced Functional Materials, 2018, 28, 1704689.	14.9	124

#	Article	IF	CITATIONS
199	Multifunctional AIEgens: Ready Synthesis, Tunable Emission, Mechanochromism, Mitochondrial, and Bacterial Imaging. Advanced Functional Materials, 2018, 28, 1704589.	14.9	96
200	In situ monitoring of molecular aggregation using circular dichroism. Nature Communications, 2018, 9, 4961.	12.8	70
201	In Situ Generation of Red-Emissive AlEgens from Commercial Sources for Nondoped OLEDs. ACS Omega, 2018, 3, 16347-16356.	3.5	19
202	Strategies to Enhance the Photosensitization: Polymerization and the Donor–Acceptor Even–Odd Effect. Angewandte Chemie, 2018, 130, 15409-15413.	2.0	35
203	Highly Emissive AlEgens with Multiple Functions: Facile Synthesis, Chromism, Specific Lipid Droplet Imaging, Apoptosis Monitoring, and In Vivo Imaging. Chemistry of Materials, 2018, 30, 7892-7901.	6.7	68
204	Strategies to Enhance the Photosensitization: Polymerization and the Donor–Acceptor Even–Odd Effect. Angewandte Chemie - International Edition, 2018, 57, 15189-15193.	13.8	198
205	Single-Molecular Near-Infrared-II Theranostic Systems: Ultrastable Aggregation-Induced Emission Nanoparticles for Long-Term Tracing and Efficient Photothermal Therapy. ACS Nano, 2018, 12, 11282-11293.	14.6	208
206	Aggregation-Induced Emission: Dynamic Visualization of Stress/Strain Distribution and Fatigue Crack Propagation by an Organic Mechanoresponsive AIE Luminogen (Adv. Mater. 44/2018). Advanced Materials, 2018, 30, 1870333.	21.0	0
207	Aggregation-Induced Emission: A Trailblazing Journey to the Field of Biomedicine. ACS Applied Bio Materials, 2018, 1, 1768-1786.	4.6	219
208	Dynamic Visualization of Stress/Strain Distribution and Fatigue Crack Propagation by an Organic Mechanoresponsive AIE Luminogen. Advanced Materials, 2018, 30, e1803924.	21.0	100
209	A Bifunctional Aggregationâ€Induced Emission Luminogen for Monitoring and Killing of Multidrugâ€Resistant Bacteria. Advanced Functional Materials, 2018, 28, 1804632.	14.9	105
210	Dual fluorescence of tetraphenylethylene-substituted pyrenes with aggregation-induced emission characteristics for white-light emission. Chemical Science, 2018, 9, 5679-5687.	7.4	119
211	Corannuleneâ€Incorporated AIE Nanodots with Highly Suppressed Nonradiative Decay for Boosted Cancer Phototheranostics In Vivo. Advanced Materials, 2018, 30, e1801065.	21.0	163
212	Exploration of biocompatible AlEgens from natural resources. Chemical Science, 2018, 9, 6497-6502.	7.4	167
213	Facile access to deep red/near-infrared emissive AlEgens for efficient non-doped OLEDs. Chemical Science, 2018, 9, 6118-6125.	7.4	101
214	Specific Two-Photon Imaging of Live Cellular and Deep-Tissue Lipid Droplets by Lipophilic AlEgens at Ultralow Concentration. Chemistry of Materials, 2018, 30, 4778-4787.	6.7	154
215	Aggregation-Induced Emission Luminogen with Near-Infrared-II Excitation and Near-Infrared-I Emission for Ultradeep Intravital Two-Photon Microscopy. ACS Nano, 2018, 12, 7936-7945.	14.6	193
216	Highly sensitive switching of solid-state luminescence by controlling intersystem crossing. Nature Communications, 2018, 9, 3044.	12.8	203

#	Article	IF	CITATIONS
217	Manipulating the Molecular Backbone to Achieve Highly Emissive Skyâ€Blue AlEgens and Their Applications in Nondoped Organic Lightâ€Emitting Diodes. Advanced Electronic Materials, 2018, 4, 1800354.	5.1	12
218	Design of multi-functional AIEgens: tunable emission, circularly polarized luminescence and self-assembly by dark through-bond energy transfer. Journal of Materials Chemistry C, 2018, 6, 8934-8940.	5.5	56
219	A facile strategy for realizing room temperature phosphorescence and single molecule white light emission. Nature Communications, 2018, 9, 2963.	12.8	339
220	Bright Near-Infrared Aggregation-Induced Emission Luminogens with Strong Two-Photon Absorption, Excellent Organelle Specificity, and Efficient Photodynamic Therapy Potential. ACS Nano, 2018, 12, 8145-8159.	14.6	281
221	A general powder dusting method for latent fingerprint development based on AlEgens. Science China Chemistry, 2018, 61, 966-970.	8.2	46
222	A Substitutionâ€Dependent Lightâ€Up Fluorescence Probe for Selectively Detecting Fe ³⁺ Ions and Its Cell Imaging Application. Advanced Functional Materials, 2018, 28, 1802833.	14.9	62
223	Designing Efficient and Ultralong Pure Organic Roomâ€Temperature Phosphorescent Materials by Structural Isomerism. Angewandte Chemie - International Edition, 2018, 57, 7997-8001.	13.8	224
224	Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes. Nature Communications, 2018, 9, 1848.	12.8	286
225	A multifunctional luminogen with aggregation-induced emission characteristics for selective imaging and photodynamic killing of both cancer cells and Gram-positive bacteria. Journal of Materials Chemistry B, 2018, 6, 3894-3903.	5.8	60
226	Redox-Active AIEgen-Derived Plasmonic and Fluorescent Core@Shell Nanoparticles for Multimodality Bioimaging. Journal of the American Chemical Society, 2018, 140, 6904-6911.	13.7	112
227	Ultrasensitive Virion Immunoassay Platform with Dual-Modality Based on a Multifunctional Aggregation-Induced Emission Luminogen. ACS Nano, 2018, 12, 9549-9557.	14.6	87
228	Rational design of red AlEgens with a new core structure from non-emissive heteroaromatics. Chemical Science, 2018, 9, 7829-7834.	7.4	50
229	Highly Efficient Photosensitizers with Farâ€Red/Nearâ€Infrared Aggregationâ€Induced Emission for In Vitro and In Vivo Cancer Theranostics. Advanced Materials, 2018, 30, e1802105.	21.0	266
230	A Simple Approach to Bioconjugation at Diverse Levels: Metal-Free Click Reactions of Activated Alkynes with Native Groups of Biotargets without Prefunctionalization. Research, 2018, 2018, 3152870.	5.7	86
231	Non-conventional fluorescent biogenic and synthetic polymers without aromatic rings. Polymer Chemistry, 2017, 8, 1722-1727.	3.9	152
232	Mitochondrionâ€Anchoring Photosensitizer with Aggregationâ€Induced Emission Characteristics Synergistically Boosts the Radiosensitivity of Cancer Cells to Ionizing Radiation. Advanced Materials, 2017, 29, 1606167.	21.0	222
233	Functionalized AIE nanoparticles with efficient deep-red emission, mitochondrial specificity, cancer cell selectivity and multiphoton susceptibility. Chemical Science, 2017, 8, 4634-4643.	7.4	69

Radiosensitizers: Mitochondrionâ€Anchoring Photosensitizer with Aggregationâ€Induced Emission Characteristics Synergistically Boosts the Radiosensitivity of Cancer Cells to Ionizing Radiation (Adv.) Tj ETQq0 0 0 2gBJ /Ove1lock 10 Tf 234

#	Article	IF	CITATIONS
235	Two-photon AIE bio-probe with large Stokes shift for specific imaging of lipid droplets. Chemical Science, 2017, 8, 5440-5446.	7.4	344
236	AlE-active theranostic system: selective staining and killing of cancer cells. Chemical Science, 2017, 8, 1822-1830.	7.4	187
237	Ionization and Anionâ~ïi€ ⁺ Interaction: A New Strategy for Structural Design of Aggregation-Induced Emission Luminogens. Journal of the American Chemical Society, 2017, 139, 16974-16979.	13.7	201
238	Facile Synthesis of Red/NIR AIE Luminogens with Simple Structures, Bright Emissions, and High Photostabilities, and Their Applications for Specific Imaging of Lipid Droplets and Imageâ€Guided Photodynamic Therapy. Advanced Functional Materials, 2017, 27, 1704039.	14.9	182
239	A Simple and Sensitive Method for an Important Physical Parameter: Reliable Measurement of Glass Transition Temperature by AlEgens. Macromolecules, 2017, 50, 7620-7627.	4.8	50
240	Multiscale Humidity Visualization by Environmentally Sensitive Fluorescent Molecular Rotors. Advanced Materials, 2017, 29, 1703900.	21.0	193
241	Why Do Simple Molecules with "Isolated―Phenyl Rings Emit Visible Light?. Journal of the American Chemical Society, 2017, 139, 16264-16272.	13.7	201
242	An acidic pH independent piperazine–TPE AIEgen as a unique bioprobe for lysosome tracing. Chemical Science, 2017, 8, 7593-7603.	7.4	112
243	AlEgens for biological process monitoring and disease theranostics. Biomaterials, 2017, 146, 115-135.	11.4	206
244	High-Contrast Visualization and Differentiation of Microphase Separation in Polymer Blends by Fluorescent AIE Probes. Macromolecules, 2017, 50, 5807-5815.	4.8	73
245	A red-emissive antibody–AlEgen conjugate for turn-on and wash-free imaging of specific cancer cells. Chemical Science, 2017, 8, 7014-7024.	7.4	79
246	Humidity Sensors: Multiscale Humidity Visualization by Environmentally Sensitive Fluorescent Molecular Rotors (Adv. Mater. 46/2017). Advanced Materials, 2017, 29, .	21.0	0
247	Synthesis of Functional Poly(propargyl imine)s by Multicomponent Polymerizations of Bromoarenes, Isonitriles, and Alkynes. ACS Macro Letters, 2017, 6, 1352-1356.	4.8	16
248	Mitochondrial Imaging with Combined Fluorescence and Stimulated Raman Scattering Microscopy Using a Probe of the Aggregation-Induced Emission Characteristic. Journal of the American Chemical Society, 2017, 139, 17022-17030.	13.7	111
249	Development of benzylidene-methyloxazolone based AIEgens and decipherment of their working mechanism. Journal of Materials Chemistry C, 2017, 5, 7191-7199.	5.5	33
250	Highly Stable Organic Small Molecular Nanoparticles as an Advanced and Biocompatible Phototheranostic Agent of Tumor in Living Mice. ACS Nano, 2017, 11, 7177-7188.	14.6	212
251	Dramatic Differences in Aggregation-Induced Emission and Supramolecular Polymerizability of Tetraphenylethene-Based Stereoisomers. Journal of the American Chemical Society, 2017, 139, 10150-10156.	13.7	170
252	Recent New Methodologies for Acetylenic Polymers with Advanced Functionalities. Topics in Current Chemistry, 2017, 375, 70.	5.8	14

#	Article	IF	CITATIONS
253	AlEgens for dark through-bond energy transfer: design, synthesis, theoretical study and application in ratiometric Hg ²⁺ sensing. Chemical Science, 2017, 8, 2047-2055.	7.4	187
254	White light emission from a single organic molecule with dual phosphorescence at room temperature. Nature Communications, 2017, 8, 416.	12.8	621
255	Activatable Fluorescent Nanoprobe with Aggregationâ€Induced Emission Characteristics for Selective In Vivo Imaging of Elevated Peroxynitrite Generation. Advanced Materials, 2016, 28, 7249-7256.	21.0	177
256	Circularly Polarized Luminescence and a Reflective Photoluminescent Chiral Nematic Liquid Crystal Display Based on an Aggregationâ€Induced Emission Luminogen. Advanced Optical Materials, 2016, 4, 534-539.	7.3	130
257	Polyarylcyanation of Diyne: A One-Pot Three-Component Convenient Route for <i>In Situ</i> Generation of Polymers with AlE Characteristics. Macromolecules, 2016, 49, 8888-8898.	4.8	32
258	Nanofibers: Click Synthesis, Aggregation-Induced Emission and Chirality, Circularly Polarized Luminescence, and Helical Self-Assembly of a Leucine-Containing Silole (Small 47/2016). Small, 2016, 12, 6420-6420.	10.0	0
259	Multicomponent polymerization: development of a one-pot synthetic route to functional polymers using diyne, N-sulfonyl azide and water/ethanol as reactants. Polymer Chemistry, 2016, 7, 5646-5654.	3.9	27
260	Aggregation-Induced Emission and Photocyclization of Poly(hexaphenyl-1,3-butadiene)s Synthesized from "1 + 2―Polycoupling of Internal Alkynes and Arylboronic Acids. Macromolecules, 2016, 49, 5817-5830.	4.8	18
261	Multicomponent Click Polymerization: A Facile Strategy toward Fused Heterocyclic Polymers. Macromolecules, 2016, 49, 5475-5483.	4.8	60
262	Click Synthesis, Aggregationâ€Induced Emission and Chirality, Circularly Polarized Luminescence, and Helical Selfâ€Assembly of a Leucineâ€Containing Silole. Small, 2016, 12, 6593-6601.	10.0	50
263	Synthesis, optical properties and helical self-assembly of a bivaline-containing tetraphenylethene. Scientific Reports, 2016, 6, 19277.	3.3	63
264	Diaminomaleonitrile-based Schiff bases: aggregation-enhanced emission, red fluorescence, mechanochromism and bioimaging applications. Journal of Materials Chemistry C, 2016, 4, 10430-10434.	5.5	65
265	A Mitochondrionâ€Specific Photoactivatable Fluorescence Turnâ€On AIEâ€Based Bioprobe for Localization Superâ€Resolution Microscope. Advanced Materials, 2016, 28, 5064-5071.	21.0	166
266	A Luminogen with Aggregationâ€Induced Emission Characteristics for Washâ€Free Bacterial Imaging, Highâ€Throughput Antibiotics Screening and Bacterial Susceptibility Evaluation. Advanced Materials, 2015, 27, 4931-4937.	21.0	111
267	Construction of regio- and stereoregular poly(enaminone)s by multicomponent tandem polymerizations of diynes, diaroyl chloride and primary amines. Polymer Chemistry, 2015, 6, 4436-4446.	3.9	42
268	Multicomponent Polycoupling of Internal Diynes, Aryl Diiodides, and Boronic Acids to Functional Poly(tetraarylethene)s. Macromolecules, 2015, 48, 8098-8107.	4.8	33
269	Poly[(maleic anhydride)- <i>alt</i> -(vinyl acetate)]: A Pure Oxygenic Nonconjugated Macromolecule with Strong Light Emission and Solvatochromic Effect. Macromolecules, 2015, 48, 64-71.	4.8	242
270	Aggregation-induced chirality, circularly polarized luminescence, and helical self-assembly of a leucine-containing AIE luminogen. Journal of Materials Chemistry C, 2015, 3, 2399-2404.	5.5	114

#	Article	IF	CITATIONS
271	Color-tunable and highly solid emissive AIE molecules: synthesis, photophysics, data storage and biological application. Journal of Materials Chemistry C, 2015, 3, 3445-3451.	5.5	31
272	Synthesis, aggregation-induced emission and electroluminescence properties of a novel compound containing tetraphenylethene, carbazole and dimesitylboron moieties. Journal of Materials Chemistry C, 2015, 3, 9095-9102.	5.5	17
273	Cascade Polyannulation of Diyne and Benzoylacetonitrile: A New Strategy for Synthesizing Functional Substituted Poly(naphthopyran)s. Macromolecules, 2015, 48, 4241-4249.	4.8	40
274	Multifunctional Poly(<i>N</i> -sulfonylamidine)s Constructed by Cu-Catalyzed Three-Component Polycouplings of Diynes, Disulfonyl Azide, and Amino Esters. Macromolecules, 2015, 48, 3180-3189.	4.8	42
275	Light-Enhanced Bacterial Killing and Wash-Free Imaging Based on AIE Fluorogen. ACS Applied Materials & Interfaces, 2015, 7, 7180-7188.	8.0	120
276	Construction of Efficient Deep Blue Aggregation-Induced Emission Luminogen from Triphenylethene for Nondoped Organic Light-Emitting Diodes. Chemistry of Materials, 2015, 27, 3892-3901.	6.7	208
277	Aggregation-Induced Emission: Together We Shine, United We Soar!. Chemical Reviews, 2015, 115, 11718-11940.	47.7	6,279
278	Conjugated polymers developed from alkynes. National Science Review, 2015, 2, 493-509.	9.5	63
279	Mechanochromic Luminescence of Aggregation-Induced Emission Luminogens. Journal of Physical Chemistry Letters, 2015, 6, 3429-3436.	4.6	368
280	Biosensing by luminogens with aggregation-induced emission characteristics. Chemical Society Reviews, 2015, 44, 4228-4238.	38.1	1,128
281	Facile Preparation of Light Refractive Poly(aroxycarbonyltriazole)s by Metalâ€Free Click Polymerization. Macromolecular Chemistry and Physics, 2014, 215, 1036-1041.	2.2	22
282	An Aggregationâ€Induced Emission Luminogen with Efficient Luminescent Mechanochromism and Optical Waveguiding Properties. Asian Journal of Organic Chemistry, 2014, 3, 118-121.	2.7	23
283	Crystallization-Induced Hybrid Nano-Sheets of Fluorescent Polymers with Aggregation-Induced Emission Characteristics for Sensitive Explosive Detection. ACS Macro Letters, 2014, 3, 21-25.	4.8	63
284	Complexation-induced circular dichroism and circularly polarised luminescence of an aggregation-induced emission luminogen. Journal of Materials Chemistry C, 2014, 2, 78-83.	5.5	69
285	Structural features and optical properties of a carbazole-containing ethene as a highly emissive organic solid. Journal of Materials Chemistry C, 2014, 2, 1004-1009.	5.5	24
286	Water-soluble bioprobes with aggregation-induced emission characteristics for light-up sensing of heparin. Journal of Materials Chemistry B, 2014, 2, 4134-4141.	5.8	58
287	Aggregation-induced emission, mechanochromism and blue electroluminescence of carbazole and triphenylamine-substituted ethenes. Journal of Materials Chemistry C, 2014, 2, 4320-4327.	5.5	102
288	Structure-dependent emission of polytriazoles. Polymer Chemistry, 2014, 5, 2301.	3.9	34

#	Article	IF	CITATIONS
289	Copper-Catalyzed Polycoupling of Diynes, Primary Amines, and Aldehydes: A New One-Pot Multicomponent Polymerization Tool to Functional Polymers. Macromolecules, 2014, 47, 4908-4919.	4.8	89
290	One-Pot Three-Component Tandem Polymerization Toward Functional Poly(arylene thiophenylene) with Aggregation-Enhanced Emission Characteristics. Macromolecules, 2014, 47, 4920-4929.	4.8	90
291	Restriction of Intramolecular Motions: The General Mechanism behind Aggregationâ€Induced Emission. Chemistry - A European Journal, 2014, 20, 15349-15353.	3.3	578
292	Aggregationâ€Induced Emission: The Whole Is More Brilliant than the Parts. Advanced Materials, 2014, 26, 5429-5479.	21.0	2,737
293	<scp>l</scp> -Valine methyl ester-containing tetraphenylethene: aggregation-induced emission, aggregation-induced circular dichroism, circularly polarized luminescence, and helical self-assembly. Materials Horizons, 2014, 1, 518-521.	12.2	122
294	Mesogen jacketed liquid crystalline polyacetylene containing triphenylene discogen: synthesis and phase structure. Polymer Chemistry, 2013, 4, 996-1005.	3.9	45
295	Ferrocene-based poly(aroxycarbonyltriazole)s: synthesis by metal-free click polymerization and use as precursors to magnetic ceramics. Polymer Chemistry, 2013, 4, 5537.	3.9	37
296	Polycyclotrimerization of Dinitriles: A New Polymerization Route for the Construction of Soluble Nitrogen-Rich Polytriazines with Hyperbranched Structures and Functional Properties. Macromolecules, 2013, 46, 9494-9506.	4.8	41
297	Defect-sensitive crystals based on diaminomaleonitrile-functionalized Schiff base with aggregation-enhanced emission. Journal of Materials Chemistry C, 2013, 1, 7314.	5.5	124
298	Facile synthesis of soluble nonlinear polymers with glycogen-like structures and functional properties from "simple―acrylic monomers. Polymer Chemistry, 2013, 4, 95-105.	3.9	43
299	Ferrocene-Decorated Hyperbranched Poly(aroxycarbonylphenylene)s: Synthesis, Light Refraction, Photopatterning and Precursor to Magnetic Ceramics. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 147-157.	3.7	12
300	AlE Materials Towards Efficient Circularly Polarized Luminescence, Organic Lasing, and Superamplified Detection of Explosives. , 2013, , 107-129.		0
301	A new route to functional polymers: atom-economical synthesis of poly(pyrazolylnaphthalene)s by rhodium-catalyzed oxidative polycoupling of phenylpyrazole and internal diynes. Polymer Chemistry, 2013, 4, 2841.	3.9	39
302	Self-assembly of organic luminophores with gelation-enhanced emission characteristics. Soft Matter, 2013, 9, 4564.	2.7	175
303	Poly(arylene ynonylene) with an aggregation-enhanced emission characteristic: a fluorescent sensor for both hydrazine and explosive detection. RSC Advances, 2013, 3, 8193.	3.6	56
304	Stoichiometric imbalance-promoted synthesis of polymers containing highly substituted naphthalenes: rhodium-catalyzed oxidative polycoupling of arylboronic acids and internal diynes. Polymer Chemistry, 2013, 4, 1372-1380.	3.9	34
305	Homopolycyclotrimerization of A ₄ -type tetrayne: A new approach for the creation of a soluble hyperbranched poly(tetraphenylethene) with multifunctionalities. Journal of Polymer Science Part A, 2013, 51, 4752-4764.	2.3	34
306	Oneâ€Pot Condensation of 2―and 2,5â€Haloâ€Substituted Benzophenones for the Synthesis of Haloâ€Substituted 9,10â€Diphenylanthracenes. Asian Journal of Organic Chemistry, 2012, 1, 331-335.	2.7	3

#	Article	IF	CITATIONS
307	Using tetraphenylethene and carbazole to create efficient luminophores with aggregation-induced emission, high thermal stability, and good hole-transporting property. Journal of Materials Chemistry, 2012, 22, 4527.	6.7	103
308	Tuning the electronic nature of aggregation-induced emission chromophores with enhanced electron-transporting properties. Journal of Materials Chemistry, 2012, 22, 5184.	6.7	34
309	High efficiency luminescent liquid crystal: aggregation-induced emission strategy and biaxially oriented mesomorphic structure. Journal of Materials Chemistry, 2012, 22, 3323.	6.7	112
310	A tetraphenylethene-based red luminophor for an efficient non-doped electroluminescence device and cellular imaging. Journal of Materials Chemistry, 2012, 22, 11018.	6.7	85
311	Luminogenic materials constructed from tetraphenylethene building blocks: Synthesis, aggregation-induced emission, two-photon absorption, light refraction, and explosive detection. Journal of Materials Chemistry, 2012, 22, 232-240.	6.7	228
312	Tetraphenylethene: a versatile AIE building block for the construction of efficient luminescent materials for organic light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 23726.	6.7	761
313	Naphthalene-substituted 2,3,4,5-tetraphenylsiloles: synthesis, structure, aggregation-induced emission and efficient electroluminescence. Journal of Materials Chemistry, 2012, 22, 20266.	6.7	24
314	Deciphering mechanism of aggregation-induced emission (AIE): Is E–Zisomerisation involved in an AIE process?. Chemical Science, 2012, 3, 493-497.	7.4	122
315	Siloleâ€containing poly(silylenevinylene)s: Synthesis, characterization, aggregationâ€enhanced emission, and explosive detection. Journal of Polymer Science Part A, 2012, 50, 2265-2274.	2.3	33
316	An AIE-active hemicyanine fluorogen with stimuli-responsive red/blue emission: extending the pH sensing range by "switch + knob―effect. Chemical Science, 2012, 3, 1804.	7.4	171
317	What makes efficient circularly polarised luminescence in the condensed phase: aggregation-induced circular dichroism and light emission. Chemical Science, 2012, 3, 2737.	7.4	338
318	Synthesis and self-assembly of tetraphenylethene and biphenyl based AIE-active triazoles. Journal of Materials Chemistry, 2012, 22, 10472.	6.7	62
319	Efficient Light Emitters in the Solid State: Synthesis, Aggregationâ€Induced Emission, Electroluminescence, and Sensory Properties of Luminogens with Benzene Cores and Multiple Triarylvinyl Peripherals. Advanced Functional Materials, 2012, 22, 378-389.	14.9	198
320	A new polymerisation route to conjugated polymers: regio- and stereoselective synthesis of linear and hyperbranched poly(arylene chlorovinylene)s by decarbonylative polyaddition of aroyl chlorides and alkynes. Chemical Science, 2011, 2, 1850.	7.4	17
321	Construction of efficient solid emitters with conventional and AIE luminogens for blue organic light-emitting diodes. Journal of Materials Chemistry, 2011, 21, 10949.	6.7	67
322	Pyrene-substituted ethenes: aggregation-enhanced excimer emission and highly efficient electroluminescence. Journal of Materials Chemistry, 2011, 21, 7210.	6.7	206
323	Aggregation-induced emission. Chemical Society Reviews, 2011, 40, 5361.	38.1	5,347
324	Molecular anchors in the solid state: Restriction of intramolecular rotation boosts emission efficiency of luminogen aggregates to unity. Chemical Science, 2011, 2, 672-675.	7.4	216

#	Article	IF	CITATIONS
325	Fabrication of Silica Nanoparticles with Both Efficient Fluorescence and Strong Magnetization and Exploration of Their Biological Applications. Advanced Functional Materials, 2011, 21, 1733-1740.	14.9	122
326	Sterol-containing tetraphenylethenes: synthesis, aggregation-induced emission, and organogel formation. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2010, 5, 325-330.	0.4	16
327	Metalâ€Free Alkyne Polyhydrothiolation: Synthesis of Functional Poly(vinylenesulfide)s with High Stereoregularity by Regioselective Thioclick Polymerization. Advanced Functional Materials, 2010, 20, 1319-1328.	14.9	86
328	Changing the Behavior of Chromophores from Aggregationâ€Caused Quenching to Aggregationâ€Induced Emission: Development of Highly Efficient Light Emitters in the Solid State. Advanced Materials, 2010, 22, 2159-2163.	21.0	834
329	Luminescent tetraphenylethene-substituted silanes. Pure and Applied Chemistry, 2010, 82, 863-870.	1.9	19
330	Crystallization-Induced Phosphorescence of Pure Organic Luminogens at Room Temperature. Journal of Physical Chemistry C, 2010, 114, 6090-6099.	3.1	765
331	A superamplification effect in the detection of explosives by a fluorescent hyperbranched poly(silylenephenylene) with aggregation-enhanced emission characteristics. Polymer Chemistry, 2010, 1, 426-429.	3.9	288
332	Click Polymerization: Progresses, Challenges, and Opportunities. Macromolecules, 2010, 43, 8693-8702.	4.8	259
333	Creation of highly efficient solid emitter by decorating pyrene core with AIE-active tetraphenylethene peripheries. Chemical Communications, 2010, 46, 2221.	4.1	352
334	Pyrazine luminogens with "free―and "locked―phenyl rings: Understanding of restriction of intramolecular rotation as a cause for aggregation-induced emission. Applied Physics Letters, 2009, 94, .	3.3	97
335	Functionalized Siloles: Versatile Synthesis, Aggregationâ€Induced Emission, and Sensory and Device Applications. Advanced Functional Materials, 2009, 19, 905-917.	14.9	311
336	Cobalt-Containing Hyperbranched Poly(silylenearylene)s. Journal of Inorganic and Organometallic Polymers and Materials, 2009, 19, 133-138.	3.7	8
337	Aggregation-induced Emission of Silole Molecules and Polymers: Fundamental and Applications. Journal of Inorganic and Organometallic Polymers and Materials, 2009, 19, 249-285.	3.7	309
338	Synthesis and properties of poly(1-phenyl-1-octyne)s containing stereogenic and chromophoric pendant groups. Science in China Series B: Chemistry, 2009, 52, 1691-1702.	0.8	4
339	Luminogenic Polyacetylenes and Conjugated Polyelectrolytes: Synthesis, Hybridization with Carbon Nanotubes, Aggregation-Induced Emission, Superamplification in Emission Quenching by Explosives, and Fluorescent Assay for Protein Quantitation. Macromolecules, 2009, 42, 9400-9411.	4.8	121
340	Aggregation-induced emission: phenomenon, mechanism and applications. Chemical Communications, 2009, , 4332.	4.1	3,438
341	Twisted Intramolecular Charge Transfer and Aggregation-Induced Emission of BODIPY Derivatives. Journal of Physical Chemistry C, 2009, 113, 15845-15853.	3.1	856
342	Preparation of Functional Poly(aroyltriazole)s by Metalâ€Free Click Polymerization. Macromolecular Symposia, 2009, 279, 7-13.	0.7	7

#	Article	IF	CITATIONS
343	Synthesis and Characterization of Ferrocene-Containing Hyperbranched Poly(aroylarylene)s. Journal of Inorganic and Organometallic Polymers and Materials, 2008, 18, 201-205.	3.7	24
344	Amine-catalyzed polycyclotrimerization of arylene bipropiolate: A metal-free and regioselective route to hyperbranched polymer. Science in China Series B: Chemistry, 2008, 51, 705-708.	0.8	9
345	Synthesis and liquid crystalline properties of poly(1â€alkyne)s carrying triphenylene discogens. Journal of Polymer Science Part A, 2008, 46, 2960-2974.	2.3	69
346	New chemosensory materials based on disubstituted polyacetylene with strong green fluorescence. Journal of Polymer Science Part A, 2008, 46, 8070-8080.	2.3	25
347	Synthesis and Light-Emitting Properties of Disubstituted Polyacetylenes Carrying Chromophoric Naphthylethynylphenyl Pendants. Journal of Physical Chemistry B, 2008, 112, 11227-11235.	2.6	17
348	Synthesis, Chain Helicity, Assembling Structure, and Biological Compatibility of Poly(phenylacetylene)s Containing <scp>l</scp> -Alanine Moieties. Macromolecules, 2008, 41, 5997-6005.	4.8	110
349	Aggregation-induced emissions of tetraphenylethene derivatives and their utilities as chemical vapor sensors and in organic light-emitting diodes. Applied Physics Letters, 2007, 91, .	3.3	479
350	Acetylene Polycyclotrimerization:  Synthesis and Characterization of Ferrocene-Containing Hyperbranched Polyarylenes. Macromolecules, 2007, 40, 5612-5617.	4.8	19
351	Synthesis of Ferrocene-containing Polyacetylenes by Click Chemistry. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 289-293.	3.7	23
352	Vapochromism and Crystallization-Enhanced Emission of 1,1-Disubstituted 2,3,4,5-Tetraphenylsiloles. Journal of Inorganic and Organometallic Polymers and Materials, 2007, 17, 673-678.	3.7	41
353	Functional Disubstituted Polyacetylenes:Â Synthesis, Liquid Crystallinity, Light Emission, and Fluorescent Photopatterning of Biphenyl-Containing Poly(1-phenyl-octyne)s with Different Functional Bridges. Journal of Physical Chemistry B, 2006, 110, 21613-21622.	2.6	27
354	Synthesis and characterization of a new disubstituted polyacetylene containing indolylazo moieties in side chains. Journal of Polymer Science Part A, 2006, 44, 5672-5681.	2.3	34
355	Facile synthesis and high optical activity of poly(1-pentyne)s carrying amino-acid pendant groups. Journal of Polymer Science Part A, 2006, 44, 6190-6201.	2.3	13
356	Synthesis and chiroptical properties ofL-valine-containing poly(phenylacetylene)s with (a)chiral pendant terminal groups. Journal of Polymer Science Part A, 2006, 44, 2117-2129.	2.3	34
357	Wrapping Carbon Nanotubes in Pyrene-Containing Poly(phenylacetylene) Chains:  Solubility, Stability, Light Emission, and Surface Photovoltaic Properties. Macromolecules, 2006, 39, 8011-8020.	4.8	158
358	Photo-cross-linkable light-emitting polymers for holographic patterning. Applied Physics Letters, 2006, 89, 191109.	3.3	5
359	Silole-Containing Conjugated Polymers. , 2005, , 37-49.		0
360	Hyperbranched Poly(aryleneethynylene)s: Synthesis, Thermal Stability and Optical Properties. Macromolecular Rapid Communications, 2005, 26, 673-677.	3.9	27

#	Article	IF	CITATIONS
361	Hyperbranched Poly(ferrocenylene)s Containing Groups 14 and 15 Elements: Syntheses, Optical and Thermal Properties, and Pyrolytic Transformations into Nanostructured Magnetoceramics. Journal of Inorganic and Organometallic Polymers, 2005, 15, 67-81.	1.5	43
362	Vapochromism of Hexaphenylsilole. Journal of Inorganic and Organometallic Polymers and Materials, 2005, 15, 287-291.	3.7	107
363	Optically active polyacetylene: Synthesis and helical conformation of a poly(phenylacetylene) carryingL-alanyl-L-alanine pendants. Journal of Polymer Science Part A, 2005, 43, 3701-3706.	2.3	26
364	Functional Polyacetylenes. Accounts of Chemical Research, 2005, 38, 745-754.	15.6	715
365	UNUSUAL ELECTRONIC AND PHOTONIC BEHAVIORS OF LINEAR POLY(SILOLYLACETYLENE)S AND HYPERBRANCHED POLY(SILOLYLENEARYLENE)S. Journal of Nonlinear Optical Physics and Materials, 2004, 13, 335-345.	1.8	11
366	Synthesis, Thermal Stability, and Light-Emitting Properties of Hyperbranched Poly(phenylenegermolene)s. Journal of Inorganic and Organometallic Polymers, 2004, 14, 39-51.	1.5	30
367	Construction of Hyperbranched Poly(alkenephenylene)s by Diyne Polycyclotrimerization:Â Single-Component Catalyst, Glycogen-like Macromolecular Structure, Facile Thermal Curing, and Strong Thermolysis Resistance. Macromolecules, 2004, 37, 5196-5210.	4.8	38
368	Liquid-crystalline and light-emitting polyacetylenes. Journal of Polymer Science Part A, 2003, 41, 2607-2629.	2.3	229
369	Self-Assembling of an Amphiphilic Polyacetylene Carryingl-Leucine Pendants:Â A Homopolymer Case. Macromolecules, 2003, 36, 5447-5450.	4.8	51
370	Synthesis, Light Emission, Nanoaggregation, and Restricted Intramolecular Rotation of 1,1-Substituted 2,3,4,5-Tetraphenylsiloles. Chemistry of Materials, 2003, 15, 1535-1546.	6.7	1,082
371	Hyperbranched Poly(phenylenesilolene)s:Â Synthesis, Thermal Stability, Electronic Conjugation, Optical Power Limiting, and Cooling-Enhanced Light Emission. Macromolecules, 2003, 36, 4319-4327.	4.8	186
372	Functional Polyacetylenes:Â Synthesis, Thermal Stability, Liquid Crystallinity, and Light Emission of Polypropiolates. Macromolecules, 2002, 35, 8288-8299.	4.8	77
373	Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications, 2001, , 1740-1741.	4.1	6,387
374	Influence of electric field on the photoluminescence of a liquid crystalline monosubstituted polyacetylene. Applied Physics Letters, 2001, 78, 1652-1654.	3.3	40
375	Nanocluster-Containing Mesoporous Magnetoceramics from Hyperbranched Organometallic Polymer Precursors. Chemistry of Materials, 2000, 12, 2617-2624.	6.7	133
376	Strong photoluminescence from monosubstituted polyacetylenes containing biphenylyl chromophores. Applied Physics Letters, 1999, 75, 4094-4096.	3.3	49
377	Novel Quinolizine AIE System: Visualization of Molecular Motion and Elaborate Tailoring for Biological Application**. Angewandte Chemie, 0, , .	2.0	5
378	Click Synthesis Enabled Sulfur Atom Strategy for Polymerizationâ€Enhanced and Twoâ€Photon Photosensitization. Angewandte Chemie, 0, , .	2.0	1