Chang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3608601/publications.pdf

Version: 2024-02-01

19	1,143	14	19
papers	citations	h-index	g-index
19	19	19	1193
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The peculiar effect of water on ionic liquids and deep eutectic solvents. Chemical Society Reviews, 2018, 47, 8685-8720.	38.1	346
2	Polyamide nanofilms with linearly-tunable thickness for high performance nanofiltration. Journal of Membrane Science, 2021, 627, 119142.	8.2	107
3	Water–Salt Oligomers Enable Supersoluble Electrolytes for Highâ€Performance Aqueous Batteries. Advanced Materials, 2021, 33, e2007470.	21.0	102
4	Interfacial Polymerization at the Alkane/Ionic Liquid Interface. Angewandte Chemie - International Edition, 2021, 60, 14636-14643.	13.8	81
5	Delignified wood with unprecedented anti-oil properties for the highly efficient separation of crude oil/water mixtures. Journal of Materials Chemistry A, 2019, 7, 16735-16741.	10.3	71
6	Nanofiltration membranes with hydrophobic microfiltration substrates for robust structure stability and high water permeation flux. Journal of Membrane Science, 2020, 593, 117444.	8.2	65
7	Revisiting the adhesion mechanism of mussel-inspired chemistry. Chemical Science, 2022, 13, 1698-1705.	7.4	53
8	Carboxylated wood-based sponges with underoil superhydrophilicity for deep dehydration of crude oil. Journal of Materials Chemistry A, 2020, 8, 11354-11361.	10.3	52
9	Cellulose nanocrystals as anti-oil nanomaterials for separating crude oil from aqueous emulsions and mixtures. Journal of Materials Chemistry A, 2019, 7, 7033-7041.	10.3	49
10	Wettability Switchable Membranes for Separating Both Oil-in-water and water-in-oil emulsions. Journal of Membrane Science, 2021, 624, 118976.	8.2	48
11	Codeposition of Levodopa and Polyethyleneimine: Reaction Mechanism and Coating Construction. ACS Applied Materials & Samp; Interfaces, 2020, 12, 54094-54103.	8.0	39
12	Polyamide nanofilms synthesized <i>via</i> controlled interfacial polymerization on a "jelly―surface. Chemical Communications, 2020, 56, 7249-7252.	4.1	35
13	Amyloid-like assembly converting commercial proteins to water-insoluble adsorbents with ultrahigh adsorption capacity and excellent antifouling property for uranium extraction. Journal of Materials Chemistry A, 2022, 10, 2987-2994.	10.3	19
14	Osmotic pressure as driving force for recovering ionic liquids from aqueous solutions. Journal of Membrane Science, 2020, 599, 117835.	8.2	16
15	Janus Metal–Organic Frameworks/Wood Aerogel Composites for Boosting Catalytic Performance by Le Châtelier's Principle. ACS Applied Materials & Interfaces, 2021, 13, 51039-51047.	8.0	14
16	When SLIPS meets TIPS: An endogenous lubricant-infused surface by taking the diluent as the lubricant. Chemical Engineering Journal, 2021, 425, 130600.	12.7	12
17	Ultrafast Interfacial Selfâ€Assembly toward Supramolecular Metalâ€Organic Films for Water Desalination. Advanced Science, 2022, 9, .	11.2	12
18	Concentrating water-soluble ionic liquids from aqueous solutions: Osmotic distillation with hydrophobic membranes. Journal of Membrane Science, 2020, 608, 118222.	8.2	11

#	Article	IF	CITATIONS
19	Visualizing and monitoring interfacial polymerization by aggregation-induced emission. Polymer Chemistry, 2021, 12, 4332-4336.	3.9	11