Dinesh Kumar Maheshwari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3608446/publications.pdf

Version: 2024-02-01

	126907	138484
4,050	33	58
citations	h-index	g-index
107	107	o 10 1
127	127	3494
docs citations	times ranked	citing authors
	citations 127	4,05033citationsh-index127127

#	Article	IF	CITATIONS
1	Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety, 2018, 156, 225-246.	6.0	529
2	Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiological Research, 2012, 167, 493-499.	5.3	416
3	Trachyspermum ammi (L.) fruit essential oil influencing on membrane permeability and surface characteristics in inhibiting food-borne pathogens. Food Control, 2011, 22, 725-731.	5.5	154
4	Biological control of root rot fungus Macrophomina phaseolina and growth enhancement of Pinus roxburghii (Sarg.) by rhizosphere competent Bacillus subtilis BN1. World Journal of Microbiology and Biotechnology, 2008, 24, 1669-1679.	3.6	125
5	Rhizosphere competent Mesorhizobiumloti MP6 induces root hair curling, inhibits Sclerotinia sclerotiorum and enhances growth of Indian mustard (Brassica campestris). Brazilian Journal of Microbiology, 2007, 38, 124-130.	2.0	118
6	Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Protection, 2010, 29, 591-598.	2.1	109
7	Plant growth enhancement and suppression of Macrophomina phaseolina causing charcoal rot of peanut by fluorescent Pseudomonas. Biology and Fertility of Soils, 2002, 35, 399-405.	4.3	106
8	Reduction in dose of chemical fertilizers and growth enhancement of sesame (Sesamum indicum L.) with application of rhizospheric competent Pseudomonas aeruginosa LES4. European Journal of Soil Biology, 2009, 45, 334-340.	3.2	88
9	Inoculation of siderophore producing rhizobacteria and their consortium for growth enhancement of wheat plant. Biocatalysis and Agricultural Biotechnology, 2018, 15, 264-269.	3.1	87
10	Zinc solubilizing bacteria (Bacillus megaterium) with multifarious plant growth promoting activities alleviates growth in Capsicum annuum L. 3 Biotech, 2020, 10, 36.	2.2	86
11	Phytohormone-Producing PGPR for Sustainable Agriculture. Sustainable Development and Biodiversity, 2015, , 159-182.	1.7	71
12	Differential antagonistic responses of Bacillus pumilus MSUA3 against Rhizoctonia solani and Fusarium oxysporum causing fungal diseases in Fagopyrum esculentum Moench. Microbiological Research, 2017, 205, 40-47.	5.3	69
13	Diverse mechanisms adopted by fluorescent Pseudomonas PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World Journal of Microbiology and Biotechnology, 2008, 24, 581-585.	3.6	66
14	Integrated approach for disease management and growth enhancement of Sesamum indicum L. utilizing Azotobacter chroococcum TRA2 and chemical fertilizer. World Journal of Microbiology and Biotechnology, 2012, 28, 3015-3024.	3.6	60
15	Revisiting the plant growth-promoting rhizobacteria: lessons from the past and objectives for the future. Archives of Microbiology, 2020, 202, 665-676.	2.2	60
16	Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC1 against Sclerotinia sclerotiorum causing stem rot of peanut. BioControl, 2006, 51, 821-835.	2.0	58
17	Bacteria consortium optimization improves nutrient uptake, nodulation, disease suppression and growth of the common bean (Phaseolus vulgaris) in both pot and field studies. Rhizosphere, 2016, 2, 13-23.	3.0	57
18	Rhizosphere Competent Pseudomonas aeruginosa GRC1 Produces Characteristic Siderophore and Enhances Growth of Indian Mustard (Brassica campestris). Current Microbiology, 2005, 51, 303-309.	2.2	55

#	Article	IF	CITATIONS
19	Role of chitinase and β-1,3-glucanase activities produced by a fluorescent pseudomonad and in vitro inhibition of Phytophthora capsici and Rhizoctonia solani. Canadian Journal of Microbiology, 2007, 53, 207-212.	1.7	55
20	A twin rhizospheric bacterial consortium induces systemic resistance to a phytopathogen Macrophomina phaseolina in mung bean. Rhizosphere, 2018, 5, 71-75.	3.0	54
21	Biological control of Macrophomina phaseolina by chemotactic fluorescent Pseudomonas aeruginosa PN1 and its plant growth promotory activity in chir-pine. Crop Protection, 2010, 29, 1142-1147.	2.1	52
22	Bioformulation of Burkholderia sp. MSSP with a multispecies consortium for growth promotion of Cajanus cajan. Canadian Journal of Microbiology, 2007, 53, 213-222.	1.7	50
23	Salinity-induced accumulation of poly-β-hydroxybutyrate in rhizobia indicating its role in cell protection. World Journal of Microbiology and Biotechnology, 2006, 22, 603-606.	3.6	47
24	Effect of Al and heavy metals on enzymes of nitrogen metabolism of fast and slow growing rhizobia under explanta conditions. World Journal of Microbiology and Biotechnology, 2010, 26, 811-816.	3.6	47
25	Cadmium resistant plant growth promoting rhizobacteria Serratia marcescens S2I7 associated with the growth promotion of rice plant. Environmental Sustainability, 2019, 2, 135-144.	2.8	46
26	Termitarium-inhabiting <i>Bacillus endophyticus</i> TSH42 and <i>Bacillus cereus</i> TSH77 colonizing <i>Curcuma longa</i> L.: isolation, characterization, and evaluation of their biocontrol and plant-growth-promoting activities. Canadian Journal of Microbiology, 2016, 62, 880-892.	1.7	45
27	Paper mill sludge as a potential source for cellulase production by Trichoderma reesei QM 9123 and Aspergillus niger using mixed cultivation. Carbohydrate Polymers, 1994, 23, 161-163.	10.2	44
28	Effect of plant growth promoting rhizobia on seed germination, growth promotion and suppression of Fusarium wilt of fenugreek (Trigonella foenum-graecum L.). Crop Protection, 2011, 30, 1396-1403.	2.1	44
29	Isolation and Anti-fungal Activities of 2-Hydroxymethyl-chroman-4-one Produced by Burkholderia sp. MSSP. Journal of Antibiotics, 2004, 57, 726-731.	2.0	42
30	Enterobacter: Role in Plant Growth Promotion. , 2011, , 159-182.		42
31	Effect of plant growth promoting Bacillus spp. on nutritional properties of Amaranthus hypochondriacus grains. Saudi Journal of Biological Sciences, 2018, 25, 1066-1071.	3.8	42
32	Multifarious activity of bioformulated Pseudomonas fluorescens PS1 and biocontrol of Sclerotinia sclerotiorum in Indian rapeseed (Brassica campestris L.). European Journal of Plant Pathology, 2011, 131, 81-93.	1.7	41
33	Emerging Role of Plant Growth Promoting Rhizobacteria in Agrobiology. , 2011, , 1-36.		40
34	Effect of Chemical Fertilizer-adaptive Variants, Pseudomonas aeruginosa GRC ₂ and Azotobacter chroococcum AC ₁ , on Macrophomina phaseolina Causing Charcoal Rot of Brassica juncea. Korean Journal of Environmental Agriculture, 2006, 25, 228-235.	0.4	40
35	Decoding multifarious role of cow dung bacteria in mobilization of zinc fractions along with growth promotion of C. annuum L. Scientific Reports, 2019, 9, 14232.	3.3	37
36	Exopolysaccharide and lactic acid bacteria: Perception, functionality and prospects. Bangladesh Journal of Pharmacology, 2015, 11, 1.	0.4	36

#	Article	IF	CITATIONS
37	Beneficial effects of fluorescent pseudomonads on seed germination, growth promotion, and suppression of charcoal rot in groundnut (Arachis hypogea L.). Journal of Microbiology and Biotechnology, 2008, 18, 1578-83.	2.1	34
38	Co-inoculation of Urea and DAP Tolerant Sinorhizobium meliloti and Pseudomonas aeruginosa as Integrated Approach for Growth Enhancement of Brassica juncea. Indian Journal of Microbiology, 2010, 50, 425-431.	2.7	32
39	Carrier based formulations of biocoenotic consortia of disease suppressive Pseudomonas aeruginosa KRP1 and Bacillus licheniformis KRB1. Ecological Engineering, 2015, 81, 272-277.	3.6	32
40	Bacteria in Agrobiology: Disease Management. , 2013, , .		31
41	Suppression of Charcoal Rot of Chickpea by Fluorescent Pseudomonas Under Saline Stress Condition. Current Microbiology, 2011, 62, 1548-1553.	2.2	30
42	Rhizobacteria isolated under field first strategy improved chickpea growth and productivity. Environmental Sustainability, 2018, 1, 461-469.	2.8	25
43	PGPR for Protection of Plant Health Under Saline Conditions. , 2012, , 239-258.		25
44	Bacteria in Agrobiology: Plant Probiotics. , 2012, , .		24
45	Pseudomonas aeruginosa (GRC1) as a strong antagonist of Macrophomina phaseolina and Fusarium oxysporum. Cytobios, 1999, 99, 183-9.	0.2	24
46	Occurrence of rhizobia in the gut of the higher termite Nasutitermes nigriceps. Systematic and Applied Microbiology, 2007, 30, 68-74.	2.8	23
47	Combined effect of chemical fertilisers and rhizosphere-competent <i>Bacillus subtilis</i> BSK17 on yield of <i>Cicer arietinum</i> . Archives of Phytopathology and Plant Protection, 2014, 47, 2305-2318.	1.3	23
48	Rhizobia as a biological control agent against soil borne plant pathogenic fungi. Indian Journal of Experimental Biology, 2003, 41, 1160-4.	0.0	23
49	Termitarium-Inhabiting Bacillus spp. Enhanced Plant Growth and Bioactive Component in Turmeric (Curcuma longa L.). Current Microbiology, 2017, 74, 184-192.	2.2	22
50	Seed-coating fenugreek with Burkholderia rhizobacteria enhances yield in field trials and can combat Fusarium wilt. Rhizosphere, 2017, 3, 92-99.	3.0	21
51	Root nodule bacteria from <i>Clitoria ternatea</i> L. are putative invasive nonrhizobial endophytes. Canadian Journal of Microbiology, 2015, 61, 131-142.	1.7	19
52	Consortium of Plant-Growth-Promoting Bacteria: Future Perspective in Agriculture. , 2012, , 185-200.		18
53	Diverse role of fast growing rhizobia in growth promotion and enhancement of psoralen content in Psoralea corylifolia L. Pharmacognosy Magazine, 2013, 9, 57.	0.6	18
54	Rhizosphere competent Pseudomonas aeruginosa in the management of Heterodera cajani on sesame. World Journal of Microbiology and Biotechnology, 2009, 25, 277-285.	3.6	17

#	Article	IF	CITATIONS
55	Potential of native cold tolerant plant growth promoting bacilli to enhance nutrient use efficiency and yield of Amaranthus hypochondriacus. Plant and Soil, 2018, 428, 307-320.	3.7	17
56	Sulfur-oxidizing buffalo dung bacteria enhance growth and yield of Foeniculum vulgare Mill Canadian Journal of Microbiology, 2019, 65, 377-386.	1.7	16
57	Optimization of Gibberellic Acid Production in Endophytic Bacillus cereus Using Response Surface Methodology and Its Use as Plant Growth Regulator in Chickpea. Journal of Plant Growth Regulation, 2022, 41, 3019-3029.	5.1	16
58	Polyphasic and functional diversity of high altitude culturable Bacillus from rhizosphere of Eleusine coracana (L.) Gaertn Applied Soil Ecology, 2017, 110, 127-136.	4.3	15
59	Ghost probiotics with a combined regimen: a novel therapeutic approach against the Zika virus, an emerging world threat. Critical Reviews in Biotechnology, 2018, 38, 438-454.	9.0	15
60	Wheat straw, a potential substrate for cellulase production usingTrichoderma reesei. World Journal of Microbiology and Biotechnology, 1993, 9, 120-121.	3.6	14
61	Growth enhancement ofSesamum indicumL. by rhizosphere-competentAzotobacter chroococcumAZO2 and its antagonistic activity againstMacrophomina phaseolina. Archives of Phytopathology and Plant Protection, 2012, 45, 437-454.	1.3	14
62	Assessment of ecological diversity of rhizobacterial communities in vermicompost and analysis of their potential to improve plant growth. Biologia (Poland), 2014, 69, 968-976.	1.5	13
63	Application of potassium-solubilising Proteus mirabilis MG738216 inhabiting cattle dung in improvingÂnutrient use efficiency of Foeniculum vulgare Mill Environmental Sustainability, 2019, 2, 401-409.	2.8	13
64	Nematicidal fluorescent pseudomonads for the <i>in vitro</i> and <i>in vivo</i> suppression of root knot (<i>Meloidogyne incognita</i>) of <i>Capsicum annuum</i> L. Pest Management Science, 2012, 68, 1148-1155.	3.4	12
65	Antibacterial effect of butyryl alkannin from <i>Arnebia euchroma</i> against vancomycin-resistant pathogens of <i>Enterococcus faecalis</i> causing urinary tract infections. Natural Product Research, 2015, 29, 2299-2301.	1.8	12
66	Isolation of plant growth-promoting Pseudomonas sp. PPR8 from the rhizosphere of Phaseolus vulgaris L Archives of Biological Sciences, 2016, 68, 363-374.	0.5	12
67	Combined effects of rhizo-competitive rhizosphere and non-rhizosphere Bacillus in plant growth promotion and yield improvement of Eleusine coracana (Ragi). Canadian Journal of Microbiology, 2020, 66, 111-124.	1.7	12
68	Optimization of indole-3-acetic acid using response surface methodology and its effect on vegetative growth of chickpea. Rhizosphere, 2021, 17, 100321.	3.0	12
69	Plant growth promotion and suppression of charcoalâ€rot fungus (<i>Macrophomina phaseolina</i>) in velvet bean (<i>Mucuna pruriens</i> L.) by root nodule bacteria. Journal of Phytopathology, 2017, 165, 463-478.	1.0	11
70	Characterization of a plant-growth-promoting non-nodulating endophytic bacterium (<i>Stenotrophomonas maltophilia</i>) from the root nodules of <i>Mucuna utilis</i> var. <i>capitata</i> L. (Safed Kaunch). Canadian Journal of Microbiology, 2020, 66, 670-677.	1.7	11
71	Endophytic bacteria promote growth of the medicinal legume Clitoria ternatea L. by chemotactic activity. Archives of Microbiology, 2020, 202, 1049-1058.	2.2	11
72	Nematicidal Activity of Some Phenolics on Root Knot, Growth and Yield of Capsicum frutescens cv. California Wonder. Journal of Phytopathology, 1990, 129, 159-164.	1.0	10

#	Article	IF	CITATIONS
73	Roles of quorum sensing molecules from Rhizobium etli RT1 in bacterial motility and biofilm formation. Brazilian Journal of Microbiology, 2017, 48, 815-821.	2.0	10
74	Bacillus megaterium Strain CDK25, a Novel Plant Growth Promoting Bacterium Enhances Proximate Chemical and Nutritional Composition of Capsicum annuum L. Frontiers in Plant Science, 2020, 11, 1147.	3.6	10
75	ACC deaminase-producing Ensifer adhaerens KS23 enhances proximate nutrient of Pisum sativum L. cultivated in high altitude. Archives of Microbiology, 2021, 203, 2689-2698.	2.2	10
76	Antibacterial activity of Glycyrrhiza glabra roots against certain gram-positive and gram-negative bacterial strains. Journal of Applied and Natural Science, 2013, 5, 459-464.	0.4	10
77	Practical use of CMC-amended rhizobial inoculant for <1>Mucuna pruriens cultivation to enhance the growth and protection against <1>Macrophomina phaseolina. Journal of General and Applied Microbiology, 2012, 58, 121-127.	0.7	9
78	Buffalo dung-inhabiting bacteria enhance the nutrient enrichment of soil and proximate contents of Foeniculum vulgare Mill. Archives of Microbiology, 2020, 202, 2461-2470.	2.2	9
79	Exploitation of Phytohormone-Producing PGPR in Development of Multispecies Bioinoculant Formulation. Sustainable Development and Biodiversity, 2015, , 297-317.	1.7	9
80	Nutrient Availability and Management in the Rhizosphere by Microorganisms. , 2012, , 301-326.		9
81	Insights into zinc-sensing metalloregulator â€~Zur' deciphering mechanism of zinc transportation in <i>Bacillus</i> spp. by modeling, simulation and molecular docking. Journal of Biomolecular Structure and Dynamics, 2022, 40, 764-779.	3.5	8
82	Cyclic siloxane biosurfactant-producing Bacillus cereus BS14 biocontrols charcoal rot pathogen Macrophomina phaseolina and induces growth promotion in Vigna mungo L Archives of Microbiology, 2021, 203, 5043-5054.	2.2	8
83	Effect of metal ions on growth of Pseudomonas aeruginosa and siderophore and protein production. Indian Journal of Experimental Biology, 2001, 39, 1318-21.	0.0	8
84	Isolation and preliminary characterization of a bacteriocin-producer <i>Bacillus</i> strain inhibiting methicillin resistant <i>Staphylococcus aureus</i> . Acta Biologica Hungarica, 2017, 68, 208-219.	0.7	7
85	Potential of Rhizobia in Productivity Enhancement of Macrotyloma uniflorum L. and Phaseolus vulgaris L. Cultivated in the Western Himalaya. , 2013, , 127-165.		7
86	Influence of 2 organocarbamates on growth, oxygen uptake in Rhizobium japonicum 2002 and nodulation in Glycine max. Zentralblatt Für Mikrobiologie, 1991, 146, 407-412.	0.2	6
87	Diverse Effects of Two Organocarbamates Nematocides on Nitrogen Assimilation of Rhizobium japonicum 2002 in Free Living Culture. Biochemie Und Physiologie Der Pflanzen, 1991, 187, 316-322.	0.5	6
88	Ecofriendly Management of Charcoal Rot and Fusarium Wilt Diseases in Sesame (Sesamum indicum L.). , 2011, , 387-405.		6
89	Transformation of pWWO in Rhizobium leguminosarum DPT to Engineer Toluene Degrading Ability for Rhizoremediation. Indian Journal of Microbiology, 2012, 52, 197-202.	2.7	6

90 Rhizobacteria for Management of Nematode Disease in Plants. , 2013, , 379-404.

6

#	Article	IF	CITATIONS
91	Evaluation of diversity of <i>Bacilli</i> from chickpea rhizosphere by 16S ARDRA and assessment of their plant-growth-promoting attributes. Archives of Phytopathology and Plant Protection, 2013, 46, 2323-2340.	1.3	6
92	Rhizobial genetic diversity in root nodules of Trigonella foenum-graecum cultivated in sub-himalayan region of Uttarakhand. Biocatalysis and Agricultural Biotechnology, 2018, 16, 243-252.	3.1	6
93	Antagonistic effect of fluorescent pseudomonads against Macrophomina phaseolina that causes charcoal rot of groundnut. Indian Journal of Experimental Biology, 2003, 41, 1442-6.	0.0	6
94	Microbial degradation of aquatic biomass byTrichoderma viride 992 andAspergillus wentii 669 with reference to the physical structure. Journal of Basic Microbiology, 1993, 33, 19-25.	3.3	5
95	Effect of carbaryl and 2,4-D to nitrogenase and uptake hydrogenase in agar cultures and root nodules formed by Rhizobium leguminosarum Journal of General and Applied Microbiology, 1994, 40, 569-574.	0.7	5
96	Role of PGPR in Integrated Nutrient Management of Oil Seed Crops. , 2011, , 1-15.		5
97	Next-generation biofertilizers and novel biostimulants: documentation and validation of mechanism of endophytic plant growth-promoting rhizobacteria in tomato. Archives of Microbiology, 2021, 203, 3715-3726.	2.2	5
98	Plant Growth-Promoting Rhizobacteria (PGPR) as Protagonists of Ever-Sustained Agriculture: An Introduction. Sustainable Development and Biodiversity, 2019, , 1-10.	1.7	5
99	Dual Behariour of Carbaryl and 2,4-Dichlorophenoxyacetic Acid in Rhizobium leguminosarum 2005 under Explanta Conditions. Zentralblatt Für Mikrobiologie, 1993, 148, 588-592.	0.2	4
100	Effects of carbaryl and 2,4-D on growth, nitrogenase and uptake hydrogenase activity in agar culture and root nodules formed by Bradyrhizobium japonicum. Microbiological Research, 1994, 149, 401-406.	5.3	4
101	Fertilizer adaptive bacteria Acidovorax valerianellae and Sinorhizobium fredii in integrated nutrient management of pigeon pea (Cajanus cajan L.). South African Journal of Botany, 2020, 134, 84-90.	2.5	4
102	Inhibitory Effects of Two Organocarbamates Nematocides on Growth and Yield of Capsicum annuum, NP 46A, and Their Reversion by Gibberellic Acid. Biochemie Und Physiologie Der Pflanzen, 1989, 184, 137-143.	0.5	3
103	Trends and Prospects of Microbial Diversity in Rhizosphere. Sustainable Development and Biodiversity, 2014, , 1-22.	1.7	3
104	Effect of GA3on the Phytotoxicity of Aldicarb and Carbofuran on Seedling Growth in Capsicum frutescens var. California Wonder and Rate of Root Knot Nematode Infestation. Journal of Phytopathology, 1989, 127, 158-168.	1.0	2
105	Lipid variation at different temperatures on two species ofXenorhabdus. Journal of Basic Microbiology, 1994, 34, 329-334.	3.3	2
106	Sustainable Approaches for Biological Control of Fusarium Wilt in Pigeon Pea (Cajanus cajan L.) Tj ETQq0 0 0 rgB	T /Oyerloc	k 10 Tf 50 14
107	Isolation of Bioactive Marker Component, Butyryl Alkannin from Arnebia euchroma Roots and Its Efficacy Against Multidrug-Resistant Pathogens. The National Academy of Sciences, India, 2015, 38, 87-90.	1.3	2

Plant Growth-Promoting Bacteria: Effective Tools for Increasing Nutrient Use Efficiency and Yield of
Crops. Sustainable Development and Biodiversity, 2021, , 293-313.

#	Article	IF	CITATIONS
109	Cattle Dung Manure Microbiota as a Substitute for Mineral Nutrients and Growth Management Practices in Plants. Sustainable Development and Biodiversity, 2021, , 77-103.	1.7	2
110	Harnessing Beneficial Bacillus in Productivity Improvement of Food Security Crops of Himalayan Agro-Climatic Zones. Sustainable Development and Biodiversity, 2019, , 105-143.	1.7	2
111	Interactions in Rhizosphere for Bioremediation of Heavy Metals. , 2013, , 439-461.		1
112	Decomposition of Organic Materials into High Value Compost for Sustainable Crop Productivity. Sustainable Development and Biodiversity, 2014, , 245-267.	1.7	1
113	Emergence of Methylobacterium spp. as Potential Organism in Agroecosystems. Sustainable Development and Biodiversity, 2015, , 53-68.	1.7	1
114	Inhibitory effect of indole compounds on the production of cell wall degrading enzymes by Aspergillus niger. Zentralblatt Für Mikrobiologie, 1992, 147, 35-40.	0.2	0
115	FORMULATION OF AN EFFECTIVE RHIZOBIUM BIOINOCULANT USING GREEN FLUORESCENT PROTEIN REPORTER SYSTEM. , 2009, , .		0
116	Evaluation of relationship between microbial load and drug efficacy of Andrographis paniculata during storage. Journal of Applied and Natural Science, 2013, 5, 142-147.	0.4	0
117	Bio-composting of Aquatic Biomass Residue and its Amendments in Soil Reclamation. Sustainable Development and Biodiversity, 2014, , 67-82.	1.7	0