James Whelan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/360801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental Analysis of the Arabidopsis Mitochondrial Proteome Highlights Signaling and Regulatory Components, Provides Assessment of Targeting Prediction Programs, and Indicates Plant-Specific Mitochondrial Proteins Â[W]. Plant Cell, 2004, 16, 241-256.	3.1	550
2	Organization and Regulation of Mitochondrial Respiration in Plants. Annual Review of Plant Biology, 2011, 62, 79-104.	8.6	537
3	Evidence for a SAL1-PAP Chloroplast Retrograde Pathway That Functions in Drought and High Light Signaling in <i>Arabidopsis</i> À Â Â. Plant Cell, 2011, 23, 3992-4012.	3.1	473
4	Molecular Definition of the Ascorbate-Glutathione Cycle in Arabidopsis Mitochondria Reveals Dual Targeting of Antioxidant Defenses in Plants. Journal of Biological Chemistry, 2003, 278, 46869-46877.	1.6	408
5	The Absence of ALTERNATIVE OXIDASE1a in Arabidopsis Results in Acute Sensitivity to Combined Light and Drought Stress Â. Plant Physiology, 2008, 147, 595-610.	2.3	357
6	Alternative oxidases in Arabidopsis: A comparative analysis of differential expression in the gene family provides new insights into function of non-phosphorylating bypasses. Biochimica Et Biophysica Acta - Bioenergetics, 2006, 1757, 730-741.	0.5	313
7	Stress-induced co-expression of alternative respiratory chain components in Arabidopsis thaliana. Plant Molecular Biology, 2005, 58, 193-212.	2.0	302
8	Genome-Wide Analysis of mRNA Decay Rates and Their Determinants in <i>Arabidopsis thaliana</i> . Plant Cell, 2007, 19, 3418-3436.	3.1	296
9	Spatio-Temporal Transcript Profiling of Rice Roots and Shoots in Response to Phosphate Starvation and Recovery Â. Plant Cell, 2013, 25, 4285-4304.	3.1	295
10	The Membrane-Bound NAC Transcription Factor ANAC013 Functions in Mitochondrial Retrograde Regulation of the Oxidative Stress Response in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 3472-3490.	3.1	293
11	A Membrane-Bound NAC Transcription Factor, ANAC017, Mediates Mitochondrial Retrograde Signaling in <i>Arabidopsis</i> Â Â. Plant Cell, 2013, 25, 3450-3471.	3.1	291
12	Stress induced gene expression drives transient DNA methylation changes at adjacent repetitive elements. ELife, 2015, 4, .	2.8	285
13	The emerging importance of the SPX domainâ€containing proteins in phosphate homeostasis. New Phytologist, 2012, 193, 842-851.	3.5	269
14	Physiological and Transcriptome Analysis of Iron and Phosphorus Interaction in Rice Seedlings Â. Plant Physiology, 2009, 151, 262-274.	2.3	256
15	Organic acid activation of the alterNatlve oxidase of plant mitochondria. FEBS Letters, 1993, 329, 259-262.	1.3	254
16	Differential Response of Gray Poplar Leaves and Roots Underpins Stress Adaptation during Hypoxia Â. Plant Physiology, 2009, 149, 461-473.	2.3	239
17	The Arabidopsis glutathione transferase gene family displays complex stress regulation and coâ€silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant Journal, 2009, 58, 53-68.	2.8	237
18	Mapping Metabolic and Transcript Temporal Switches during Germination in Rice Highlights Specific Transcription Factors and the Role of RNA Instability in the Germination Process Â. Plant Physiology, 2009, 149, 961-980.	2.3	236

#	Article	IF	CITATIONS
19	The Transcription Factor ABI4 Is a Regulator of Mitochondrial Retrograde Expression of <i>ALTERNATIVE OXIDASE1a</i> Â Â Â Â. Plant Physiology, 2009, 150, 1286-1296.	2.3	234
20	Alternative oxidase: a target and regulator of stress responses. Physiologia Plantarum, 2009, 137, 354-361.	2.6	211
21	Repeated, recent and diverse transfers of a mitochondrial gene to the nucleus in flowering plants. Nature, 2000, 408, 354-357.	13.7	210
22	In-Depth Temporal Transcriptome Profiling Reveals a Crucial Developmental Switch with Roles for RNA Processing and Organelle Metabolism That Are Essential for Germination in Arabidopsis Â. Plant Physiology, 2011, 157, 1342-1362.	2.3	207
23	Towards an Analysis of the Rice Mitochondrial Proteome. Plant Physiology, 2003, 132, 230-242.	2.3	194
24	Molecular Distinction between Alternative Oxidase from Monocots and Dicots. Plant Physiology, 2002, 129, 949-953.	2.3	189
25	Progress in Transcriptionally Targeted and Regulatable Vectors for Genetic Therapy. Human Gene Therapy, 1997, 8, 803-815.	1.4	179
26	AtWRKY40 and AtWRKY63 Modulate the Expression of Stress-Responsive Nuclear Genes Encoding Mitochondrial and Chloroplast Proteins Â. Plant Physiology, 2013, 162, 254-271.	2.3	175
27	Defining the Mitochondrial Stress Response in Arabidopsis thaliana. Molecular Plant, 2009, 2, 1310-1324.	3.9	167
28	TCP Transcription Factors Link the Regulation of Genes Encoding Mitochondrial Proteins with the Circadian Clock in <i>Arabidopsis thaliana</i> Â Â. Plant Cell, 2011, 22, 3921-3934.	3.1	164
29	Extensive transcriptomic and epigenomic remodelling occurs during Arabidopsis thaliana germination. Genome Biology, 2017, 18, 172.	3.8	163
30	Comparative analysis between plant species of transcriptional and metabolic responses to hypoxia. New Phytologist, 2011, 190, 472-487.	3.5	157
31	Anterograde and Retrograde Regulation of Nuclear Genes Encoding Mitochondrial Proteins during Growth, Development, and Stress. Molecular Plant, 2014, 7, 1075-1093.	3.9	156
32	Ordered Assembly of Mitochondria During Rice Germination Begins with Promitochondrial Structures Rich in Components of the Protein Import Apparatus. Plant Molecular Biology, 2006, 60, 201-223.	2.0	153
33	A Transcriptomic and Proteomic Characterization of the Arabidopsis Mitochondrial Protein Import Apparatus and Its Response to Mitochondrial Dysfunction. Plant Physiology, 2004, 134, 777-789.	2.3	148
34	Functional Definition of Outer Membrane Proteins Involved in Preprotein Import into Mitochondria. Plant Cell, 2007, 19, 3739-3759.	3.1	146
35	Community recommendations on terminology and procedures used in flooding and low oxygen stress research. New Phytologist, 2017, 214, 1403-1407.	3.5	146
36	The Expression of Alternative Oxidase and Uncoupling Protein during Fruit Ripening in Mango. Plant Physiology, 2001, 126, 1619-1629.	2.3	142

#	Article	IF	CITATIONS
37	Defining Core Metabolic and Transcriptomic Responses to Oxygen Availability in Rice Embryos and Young Seedlings Â. Plant Physiology, 2009, 151, 306-322.	2.3	141
38	ldentification of Regulatory Pathways Controlling Gene Expression of Stress-Responsive Mitochondrial Proteins in Arabidopsis Â. Plant Physiology, 2008, 147, 1858-1873.	2.3	140
39	Protein transport in organelles: Dual targeting of proteins to mitochondria and chloroplasts. FEBS Journal, 2009, 276, 1187-1195.	2.2	140
40	Phosphate homeostasis in the yeast <i>Saccharomyces cerevisiae</i> , the key role of the SPX domainâ€containing proteins. FEBS Letters, 2012, 586, 289-295.	1.3	140
41	Approaches to defining dualâ€ŧargeted proteins in Arabidopsis. Plant Journal, 2009, 57, 1128-1139.	2.8	139
42	Functional characterization of the rice <i>SPXâ€MFS</i> family reveals a key role of <i>OsSPXâ€MFS1</i> in controlling phosphate homeostasis in leaves. New Phytologist, 2012, 196, 139-148.	3.5	139
43	ldentification of a novel iron regulated basic helix-loop-helix protein involved in Fe homeostasis in Oryza sativa. BMC Plant Biology, 2010, 10, 166.	1.6	137
44	Defining reference genes in Oryza sativausing organ, development, biotic and abiotic transcriptome datasets. BMC Plant Biology, 2010, 10, 56.	1.6	135
45	Mitochondrial protein import in plants. Signals, sorting, targeting, processing and regulation. Plant Molecular Biology, 1998, 38, 311-338.	2.0	134
46	Phage-Type RNA Polymerase RPOTmp Performs Gene-Specific Transcription in Mitochondria of Arabidopsis thaliana Â. Plant Cell, 2009, 21, 2762-2779.	3.1	134
47	Differential Expression of the Multigene Family Encoding the Soybean Mitochondrial Alternative Oxidase. Plant Physiology, 1997, 114, 455-466.	2.3	130
48	Experimental Analysis of the Rice Mitochondrial Proteome, Its Biogenesis, and Heterogeneity Â. Plant Physiology, 2009, 149, 719-734.	2.3	127
49	A plant outer mitochondrial membrane protein with high amino acid sequence identity to a chloroplast protein import receptor. FEBS Letters, 2004, 557, 109-114.	1.3	126
50	Characterization of Mitochondrial Alternative NAD(P)H Dehydrogenases in Arabidopsis: Intraorganelle Location and Expression. Plant and Cell Physiology, 2006, 47, 43-54.	1.5	126
51	Nucleotide and RNA Metabolism Prime Translational Initiation in the Earliest Events of Mitochondrial Biogenesis during Arabidopsis Germination Â. Plant Physiology, 2012, 158, 1610-1627.	2.3	124
52	Superoxide Stimulates a Proton Leak in Potato Mitochondria That Is Related to the Activity of Uncoupling Protein. Journal of Biological Chemistry, 2003, 278, 22298-22302.	1.6	123
53	The Soybean Sugar Transporter GmSWEET15 Mediates Sucrose Export from Endosperm to Early Embryo. Plant Physiology, 2019, 180, 2133-2141.	2.3	123
54	Cyclin-dependent Kinase E1 (CDKE1) Provides a Cellular Switch in Plants between Growth and Stress Responses. Journal of Biological Chemistry, 2013, 288, 3449-3459.	1.6	121

#	Article	IF	CITATIONS
55	Alternative Splicing Plays a Critical Role in Maintaining Mineral Nutrient Homeostasis in Rice (<i>Oryza sativa</i>). Plant Cell, 2018, 30, 2267-2285.	3.1	121
56	Refining the Definition of Plant Mitochondrial Presequences through Analysis of Sorting Signals, N-Terminal Modifications, and Cleavage Motifs Â. Plant Physiology, 2009, 150, 1272-1285.	2.3	119
57	Alternative Oxidase Is Positive for Plant Performance. Trends in Plant Science, 2018, 23, 588-597.	4.3	114
58	Chlorophyll Biosynthesis. Expression of a Second <i>Chl I</i> Gene of Magnesium Chelatase in Arabidopsis Supports Only Limited Chlorophyll Synthesis. Plant Physiology, 2002, 128, 770-779.	2.3	113
59	The RCC1 family protein RUG3 is required for splicing of <i>nad2</i> and complex I biogenesis in mitochondria of <i>Arabidopsis thaliana</i> . Plant Journal, 2011, 67, 1067-1080.	2.8	113
60	OsSPX-MFS3, a vacuolar phosphate efflux transporter, is involved in maintaining Pi homeostasis in rice. Plant Physiology, 2015, 169, pp.01005.2015.	2.3	109
61	Genes for Two Mitochondrial Ribosomal Proteins in Flowering Plants Are Derived from Their Chloroplast or Cytosolic Counterparts. Plant Cell, 2002, 14, 931-943.	3.1	108
62	Conserved and Novel Functions for Arabidopsis thaliana MIA40 in Assembly of Proteins in Mitochondria and Peroxisomes. Journal of Biological Chemistry, 2010, 285, 36138-36148.	1.6	108
63	Antagonistic, overlapping and distinct responses to biotic stress in rice (Oryza sativa) and interactions with abiotic stress. BMC Genomics, 2013, 14, 93.	1.2	103
64	Tom22', an 8-kDa trans-Site Receptor in Plants and Protozoans, Is a Conserved Feature of the TOM Complex That Appeared Early in the Evolution of Eukaryotes. Molecular Biology and Evolution, 2004, 21, 1557-1564.	3.5	101
65	Analysis of the Alternative Oxidase Promoters from Soybean. Plant Physiology, 2003, 133, 1158-1169.	2.3	99
66	Nine 3-ketoacyl-CoA thiolases (KATs) and acetoacetyl-CoA thiolases (ACATs) encoded by five genes in Arabidopsis thaliana are targeted either to peroxisomes or cytosol but not to mitochondria. Plant Molecular Biology, 2006, 63, 97-108.	2.0	98
67	Type II NAD(P)H dehydrogenases are targeted to mitochondria and chloroplasts or peroxisomes in <i>Arabidopsis thaliana</i> . FEBS Letters, 2008, 582, 3073-3079.	1.3	97
68	Regulation of the Alternative Oxidase in Plants and Fungi Functional Plant Biology, 1995, 22, 497.	1.1	95
69	Exploring the Function-Location Nexus: Using Multiple Lines of Evidence in Defining the Subcellular Location of Plant Proteins. Plant Cell, 2009, 21, 1625-1631.	3.1	95
70	Characterization of the Preprotein and Amino Acid Transporter Gene Family in Arabidopsis. Plant Physiology, 2007, 143, 199-212.	2.3	94
71	Ethylene is involved in the regulation of iron homeostasis by regulating the expression of iron-acquisition-related genes in Oryza sativa. Journal of Experimental Botany, 2011, 62, 667-674.	2.4	94
72	What happens to plant mitochondria under low oxygen? An omics review of the responses to low oxygen and reoxygenation. Plant, Cell and Environment, 2014, 37, 2260-2277.	2.8	92

#	Article	IF	CITATIONS
73	Dissecting the Metabolic Role of Mitochondria during Developmental Leaf Senescence. Plant Physiology, 2016, 172, 2132-2153.	2.3	91
74	Multiple Lines of Evidence Localize Signaling, Morphology, and Lipid Biosynthesis Machinery to the Mitochondrial Outer Membrane of Arabidopsis Â. Plant Physiology, 2011, 157, 1093-1113.	2.3	90
75	Regulation of alternative oxidase gene expression in soybean. Plant Molecular Biology, 2002, 50, 735-742.	2.0	89
76	TGD1, -2, and -3 Proteins Involved in Lipid Trafficking Form ATP-binding Cassette (ABC) Transporter with Multiple Substrate-binding Proteins. Journal of Biological Chemistry, 2012, 287, 21406-21415.	1.6	89
77	Pentatricopeptide repeat domain protein 3 associates with the mitochondrial small ribosomal subunit and regulates translation. FEBS Letters, 2009, 583, 1853-1858.	1.3	88
78	Overexpression of <i>OsPAP10a</i> , A Rootâ€Associated Acid Phosphatase, Increased Extracellular Organic Phosphorus Utilization in Rice. Journal of Integrative Plant Biology, 2012, 54, 631-639.	4.1	88
79	A Functional Antagonistic Relationship between Auxin and Mitochondrial Retrograde Signaling Regulates <i>Alternative Oxidase1a</i> Expression in Arabidopsis Â. Plant Physiology, 2014, 165, 1233-1254.	2.3	87
80	A novelin vitrosystem for simultaneous import of precursor proteins into mitochondria and chloroplasts. Plant Journal, 2002, 30, 213-220.	2.8	85
81	Pentatricopeptide repeat domain protein 1 lowers the levels of mitochondrial leucine tRNAs in cells. Nucleic Acids Research, 2009, 37, 5859-5867.	6.5	85
82	Decreasing Electron Flux through the Cytochrome and/or Alternative Respiratory Pathways Triggers Common and Distinct Cellular Responses Dependent on Growth Conditions Â. Plant Physiology, 2014, 167, 228-250.	2.3	85
83	Mitochondrial and Chloroplast Stress Responses Are Modulated in Distinct Touch and Chemical Inhibition Phases. Plant Physiology, 2016, 171, 2150-2165.	2.3	85
84	Mitochondrial and Nuclear Localization of a Novel Pea Thioredoxin: Identification of Its Mitochondrial Target Proteins Â. Plant Physiology, 2009, 150, 646-657.	2.3	81
85	The alternative oxidase is encoded in a multigene family in soybean. Planta, 1996, 198, 197-201.	1.6	80
86	The mitochondrial outer membrane <scp>AAA ATP</scp> ase At <scp>OM</scp> 66 affects cell death and pathogen resistance in <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2014, 80, 709-727.	2.8	80
87	Oxygen Initiation of Respiration and Mitochondrial Biogenesis in Rice. Journal of Biological Chemistry, 2007, 282, 15619-15631.	1.6	79
88	Comparison of Transcriptional Changes to Chloroplast and Mitochondrial Perturbations Reveals Common and Specific Responses in Arabidopsis. Frontiers in Plant Science, 2012, 3, 281.	1.7	79
89	Interaction between hormonal and mitochondrial signalling during growth, development and in plant defence responses. Plant, Cell and Environment, 2016, 39, 1127-1139.	2.8	79
90	How Do Plant Mitochondria Avoid Importing Chloroplast Proteins? Components of the Import Apparatus Tom20 and Tom22 from Arabidopsis Differ from Their Fungal Counterparts1. Plant Physiology, 2000, 123, 811-816.	2.3	78

6

#	Article	IF	CITATIONS
91	Characterization of the targeting signal of dual-targeted pea glutathione reductase. Plant Molecular Biology, 2003, 53, 341-356.	2.0	76
92	Protein import into mitochondria: origins and functions today (Review). Molecular Membrane Biology, 2005, 22, 87-100.	2.0	76
93	Protein import into plant mitochondria: signals, machinery, processing, and regulation. Journal of Experimental Botany, 2014, 65, 6301-6335.	2.4	76
94	Protein phosphorylation stimulates the rate of malate uptake across the peribacteroid membrane of soybean nodules. FEBS Letters, 1991, 293, 188-190.	1.3	75
95	Dual Location of the Mitochondrial Preprotein Transporters B14.7 and Tim23-2 in Complex I and the TIM17:23 Complex in <i>Arabidopsis</i> Links Mitochondrial Activity and Biogenesis. Plant Cell, 2012, 24, 2675-2695.	3.1	75
96	Identification and characterisation of hypomethylated DNA loci controlling quantitative resistance in Arabidopsis. ELife, 2019, 8, .	2.8	73
97	ANAC017 Coordinates Organellar Functions and Stress Responses by Reprogramming Retrograde Signaling. Plant Physiology, 2019, 180, 634-653.	2.3	72
98	Identification, Expression, and Import of Components 17 and 23 of the Inner Mitochondrial Membrane Translocase from Arabidopsis,. Plant Physiology, 2003, 131, 1737-1747.	2.3	71
99	Acquisition, Conservation, and Loss of Dual-Targeted Proteins in Land Plants Â. Plant Physiology, 2013, 161, 644-662.	2.3	71
100	A transcription factor OsbHLH156 regulates Strategy II iron acquisition through localising IRO2 to the nucleus in rice. New Phytologist, 2020, 225, 1247-1260.	3.5	71
101	Arabidopsis thalianaferrochelatase-I and -II are not imported intoArabidopsismitochondria. FEBS Letters, 2001, 506, 291-295.	1.3	70
102	A dualâ€ŧargeted purple acid phosphatase in <i>Arabidopsis thaliana</i> moderates carbon metabolism and its overexpression leads to faster plant growth and higher seed yield. New Phytologist, 2012, 194, 206-219.	3.5	70
103	Differential Gene Expression and Subcellular Targeting of Arabidopsis Glutathione S-Transferase F8 Is Achieved through Alternative Transcription Start Sites. Journal of Biological Chemistry, 2007, 282, 28915-28928.	1.6	69
104	Bioenergetic differences selectively sensitize tumorigenic liver progenitor cells to a new gold(I) compound. Carcinogenesis, 2008, 29, 1124-1133.	1.3	69
105	Interaction between plastid and mitochondrial retrograde signalling pathways during changes to plastid redox status. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130231.	1.8	69
106	Prohibitins: mitochondrial partners in development and stress response. Trends in Plant Science, 2010, 15, 275-282.	4.3	68
107	Os <scp>NLA</scp> 1, a <scp>RING</scp> â€type ubiquitin ligase, maintains phosphate homeostasis in <i>Oryza sativa</i> via degradation of phosphate transporters. Plant Journal, 2017, 90, 1040-1051.	2.8	68
108	Alternative Oxidase Isoforms Are Differentially Activated by Tricarboxylic Acid Cycle Intermediates. Plant Physiology, 2018, 176, 1423-1432.	2.3	68

#	Article	IF	CITATIONS
109	Analysis of the Rice Mitochondrial Carrier Family Reveals Anaerobic Accumulation of a Basic Amino Acid Carrier Involved in Arginine Metabolism during Seed Germination Â. Plant Physiology, 2010, 154, 691-704.	2.3	67
110	Tissue-Specific Expression of the Alternative Oxidase in Soybean and Siratro. Plant Physiology, 1992, 99, 712-717.	2.3	66
111	Recent advances in <i>Cannabis sativa</i> genomics research. New Phytologist, 2021, 230, 73-89.	3.5	66
112	Sorting of precursor proteins between isolated spinach leaf mitochondria and chloroplasts. Plant Molecular Biology, 1990, 14, 977-982.	2.0	65
113	Differential Expression of Alternative Oxidase Genes in Soybean Cotyledons during Postgerminative Development. Plant Physiology, 1998, 118, 675-682.	2.3	65
114	Intracellular gene transfer: Reduced hydrophobicity facilitates gene transfer for subunit 2 of cytochrome c oxidase. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10510-10515.	3.3	63
115	Dynamic and rapid changes in the transcriptome and epigenome during germination and in developing rice (<i>Oryza sativa</i>) coleoptiles under anoxia and reâ€oxygenation. Plant Journal, 2017, 89, 805-824.	2.8	63
116	Title is missing!. Plant and Soil, 2001, 231, 151-160.	1.8	61
117	Signals Required for the Import and Processing of the Alternative Oxidase into Mitochondria. Journal of Biological Chemistry, 1999, 274, 1286-1293.	1.6	60
118	Identification of OsbHLH133 as a regulator of iron distribution between roots and shoots in <i>Oryza sativa</i> . Plant, Cell and Environment, 2013, 36, 224-236.	2.8	60
119	Applications of hyperspectral imaging in plant phenotyping. Trends in Plant Science, 2022, 27, 301-315.	4.3	60
120	Why genes persist in organelle genomes. Genome Biology, 2005, 6, 110.	13.9	57
121	Sulphur dioxide evokes a large scale reprogramming of the grape berry transcriptome associated with oxidative signalling and biotic defence responses. Plant, Cell and Environment, 2012, 35, 405-417.	2.8	57
122	Mitochondrial Defects Confer Tolerance against Cellulose Deficiency. Plant Cell, 2016, 28, 2276-2290.	3.1	57
123	Nutrient stress-induced chromatin changes in plants. Current Opinion in Plant Biology, 2017, 39, 1-7.	3.5	57
124	Determining Degradation and Synthesis Rates of Arabidopsis Proteins Using the Kinetics of Progressive 15N Labeling of Two-dimensional Gel-separated Protein Spots. Molecular and Cellular Proteomics, 2012, 11, M111.010025.	2.5	56
125	Unique components of the plant mitochondrial protein import apparatus. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 304-313.	1.9	56
126	Linking mitochondrial and chloroplast retrograde signalling in plants. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190410.	1.8	55

#	Article	IF	CITATIONS
127	Sequencing of a Soybean Alternative Oxidase cDNA Clone. Plant Physiology, 1993, 103, 1481-1481.	2.3	54
128	Mitochondrial Biogenesis and Function in Arabidopsis ^{â€} . The Arabidopsis Book, 2008, 6, e0111.	0.5	54
129	LETM Proteins Play a Role in the Accumulation of Mitochondrially Encoded Proteins in Arabidopsis thaliana and AtLETM2 Displays Parent of Origin Effects. Journal of Biological Chemistry, 2012, 287, 41757-41773.	1.6	54
130	SPX4 Acts on PHR1-Dependent and -Independent Regulation of Shoot Phosphorus Status in Arabidopsis. Plant Physiology, 2019, 181, 332-352.	2.3	54
131	Studies on the import and processing of the alternative oxidase precursor by isolated soybean mitochondria. Plant Molecular Biology, 1995, 27, 769-778.	2.0	53
132	An in silico analysis of the mitochondrial protein import apparatus of plants. BMC Plant Biology, 2010, 10, 249.	1.6	53
133	Mitochondrial biogenesis in plants during seed germination. Mitochondrion, 2014, 19, 214-221.	1.6	53
134	Mechanisms of growth and patterns of gene expression in oxygenâ€deprived rice coleoptiles. Plant Journal, 2015, 82, 25-40.	2.8	53
135	Glutaredoxin S15 Is Involved in Fe-S Cluster Transfer in Mitochondria Influencing Lipoic Acid-Dependent Enzymes, Plant Growth, and Arsenic Tolerance in Arabidopsis. Plant Physiology, 2016, 170, 1284-1299.	2.3	53
136	Identification of AtNDI1, an Internal Non-Phosphorylating NAD(P)H Dehydrogenase in Arabidopsis Mitochondria. Plant Physiology, 2003, 133, 1968-1978.	2.3	52
137	Mutation in xyloglucan 6-xylosytransferase results in abnormal root hair development in Oryza sativa. Journal of Experimental Botany, 2014, 65, 4149-4157.	2.4	52
138	Gene transfer from mitochondrion to nucleus: novel mechanisms for gene activation from Cox2. Plant Journal, 2002, 30, 11-21.	2.8	51
139	The plant mitochondrial protein import apparatus — The differences make it interesting. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 1233-1245.	1.1	51
140	Mitochondrial signalling is critical for acclimation and adaptation to flooding in <i>Arabidopsis thaliana</i> . Plant Journal, 2020, 103, 227-247.	2.8	51
141	Cloning of an Additional cDNA for the Alternative Oxidase in Tobacco. Plant Physiology, 1995, 107, 1469-1470.	2.3	50
142	Characterization of the Regulatory and Expression Context of an Alternative Oxidase Gene Provides Insights into Cyanide-Insensitive Respiration during Growth and Development. Plant Physiology, 2007, 143, 1519-1533.	2.3	50
143	Organellar oligopeptidase (OOP) provides a complementary pathway for targeting peptide degradation in mitochondria and chloroplasts. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3761-9.	3.3	50
144	Stress responsive mitochondrial proteins in Arabidopsis thaliana. Free Radical Biology and Medicine, 2018, 122, 28-39.	1.3	50

#	Article	IF	CITATIONS
145	MRPS27 is a pentatricopeptide repeat domain protein required for the translation of mitochondrially encoded proteins. FEBS Letters, 2012, 586, 3555-3561.	1.3	49
146	RNA-Seq analysis identifies key genes associated with haustorial development in the root hemiparasite Santalum album. Frontiers in Plant Science, 2015, 6, 661.	1.7	49
147	Molecular interaction between PHO2 and GIGANTEA reveals a new crosstalk between flowering time and phosphate homeostasis in <scp><i>Oryza sativa</i></scp> . Plant, Cell and Environment, 2017, 40, 1487-1499.	2.8	49
148	Unraveling the Role of Mitochondria During Oxidative Stress in Plants. IUBMB Life, 2001, 51, 201-205.	1.5	48
149	How do plants make mitochondria?. Planta, 2013, 237, 429-439.	1.6	48
150	Environmental stresses inhibit and stimulate different protein import pathways in plant mitochondria. FEBS Letters, 2003, 547, 125-130.	1.3	47
151	N-terminal Domain of the Dual-targeted Pea Glutathione Reductase Signal Peptide Controls Organellar Targeting Efficiency. Journal of Molecular Biology, 2002, 324, 577-585.	2.0	46
152	The Transcription Factor MYB29 Is a Regulator of <i>ALTERNATIVE OXIDASE1a</i> . Plant Physiology, 2017, 173, 1824-1843.	2.3	46
153	Two h-Type Thioredoxins Interact with the E2 Ubiquitin Conjugase PHO2 to Fine-Tune Phosphate Homeostasis in Rice. Plant Physiology, 2017, 173, 812-824.	2.3	46
154	The Mitochondrial Protein Import Component, TRANSLOCASE OF THE INNER MEMBRANE17-1, Plays a Role in Defining the Timing of Germination in Arabidopsis. Plant Physiology, 2014, 166, 1420-1435.	2.3	45
155	Stepwise Evolution of a Buried Inhibitor Peptide over 45 My. Molecular Biology and Evolution, 2017, 34, 1505-1516.	3.5	45
156	Processing of the Dual Targeted Precursor Protein of Glutathione Reductase in Mitochondria and Chloroplasts. Journal of Molecular Biology, 2004, 343, 639-647.	2.0	44
157	Subcomplexes of Ancestral Respiratory Complex I Subunits Rapidly Turn Over in Vivo as Productive Assembly Intermediates in Arabidopsis*. Journal of Biological Chemistry, 2013, 288, 5707-5717.	1.6	44
158	The N-terminal Cleavable Extension of Plant Carrier Proteins is Responsible for Efficient Insertion into the Inner Mitochondrial Membrane. Journal of Molecular Biology, 2005, 351, 16-25.	2.0	43
159	RNA-seq analysis identifies an intricate regulatory network controlling cluster root development in white lupin. BMC Genomics, 2014, 15, 230.	1.2	43
160	CRISPR/Cas9-Mediated Knockout of GmFATB1 Significantly Reduced the Amount of Saturated Fatty Acids in Soybean Seeds. International Journal of Molecular Sciences, 2021, 22, 3877.	1.8	43
161	Mutagenesis and computer modelling approach to study determinants for recognition of signal peptides by the mitochondrial processing peptidase. Plant Journal, 2001, 27, 427-438.	2.8	42
162	The C-terminal Region of TIM17 Links the Outer and Inner Mitochondrial Membranes in Arabidopsis and Is Essential for Protein Import. Journal of Biological Chemistry, 2005, 280, 16476-16483.	1.6	42

#	Article	IF	CITATIONS
163	Common and distinct organ and stress responsive transcriptomic patterns in Oryza sativa and Arabidopsis thaliana. BMC Plant Biology, 2010, 10, 262.	1.6	42
164	Analysis of Posttranslational Activation of Alternative Oxidase Isoforms. Plant Physiology, 2017, 174, 2113-2127.	2.3	42
165	Widespread dual targeting of proteins in land plants: When, where, how and why. Plant Signaling and Behavior, 2013, 8, e25034.	1.2	41
166	Functional and composition differences between mitochondrial complex II in Arabidopsis and rice are correlated with the complex genetic history of the enzyme. Plant Molecular Biology, 2010, 72, 331-342.	2.0	40
167	Protein import into plant mitochondria. , 1997, 33, 771-789.		39
168	Induction of alternative oxidase synthesis by herbicides inhibiting branched-chain amino acid synthesis. Plant Journal, 1997, 11, 649-657.	2.8	39
169	AtPAP2 is a tail-anchored protein in the outer membrane of chloroplasts and mitochondria. Plant Signaling and Behavior, 2012, 7, 927-932.	1.2	39
170	Zinc-dependent intermembrane space proteins stimulate import of carrier proteins into plant mitochondria. Plant Journal, 2002, 30, 555-566.	2.8	38
171	Direct comparison of Arabidopsis gene expression reveals different responses to melatonin versus auxin. BMC Plant Biology, 2019, 19, 567.	1.6	37
172	Identification of a novel mitochondrial protein, short postembryonic roots 1 (SPR1), involved in root development and iron homeostasis in <i>Oryza sativa</i> . New Phytologist, 2011, 189, 843-855.	3.5	36
173	A Casparian strip domain-like gene, CASPL, negatively alters growth and cold tolerance. Scientific Reports, 2015, 5, 14299.	1.6	36
174	Isolation of Intact Mitochondria from the Model Plant Species Arabidopsis thaliana and Oryza sativa. Methods in Molecular Biology, 2015, 1305, 1-12.	0.4	36
175	Expression and kinetics of the mitochondrial alternative oxidase in nitrogen-fixing nodules of soybean roots. Plant, Cell and Environment, 1997, 20, 1273-1282.	2.8	35
176	The Mitochondrial Protein Import Machinery of Plants (MPIMP) database. Nucleic Acids Research, 2003, 31, 325-327.	6.5	35
177	Comprehensive Mitochondrial Metabolic Shift during the Critical Node of Seed Ageing in Rice. PLoS ONE, 2016, 11, e0148013.	1.1	35
178	Dual and dynamic intracellular localization of Arabidopsis thaliana SnRK1.1. Journal of Experimental Botany, 2019, 70, 2325-2338.	2.4	34
179	The N-terminal Extension of Plant Mitochondrial Carrier Proteins is Removed by Two-step Processing: The First Cleavage is by the Mitochondrial Processing Peptidase. Journal of Molecular Biology, 2004, 344, 443-454.	2.0	32
180	How unique is the low oxygen response? An analysis of the anaerobic response during germination and comparison with abiotic stress in rice and Arabidopsis. Frontiers in Plant Science, 2013, 4, 349.	1.7	32

#	Article	IF	CITATIONS
181	Proteomic and Carbonylation Profile Analysis at the Critical Node of Seed Ageing in Oryza sativa. Scientific Reports, 2017, 7, 40611.	1.6	32
182	A family of small, cyclic peptides buried in preproalbumin since the Eocene epoch. Plant Direct, 2018, 2, e00042.	0.8	32
183	Mitochondrial function modulates touch signalling in <i>Arabidopsis thaliana</i> . Plant Journal, 2019, 97, 623-645.	2.8	32
184	Characterization of the Import Pathway of the FAd Subunit of Mitochondrial ATP Synthase into Isolated Plant Mitochondria. Archives of Biochemistry and Biophysics, 1996, 335, 358-368.	1.4	31
185	The outer mitochondrial membrane in higher plants. Trends in Plant Science, 2013, 18, 207-217.	4.3	31
186	RNAâ€seq analysis of laser microdissected <i>Arabidopsis thaliana</i> leaf epidermis, mesophyll and vasculature defines tissueâ€specific transcriptional responses to multiple stress treatments. Plant Journal, 2021, 107, 938-955.	2.8	31
187	Vision, challenges and opportunities for a Plant Cell Atlas. ELife, 2021, 10, .	2.8	31
188	Import of precursor proteins into mitochondria from soybean tissues during development. FEBS Letters, 1999, 464, 53-59.	1.3	30
189	Phosphorylation and Dephosphorylation of the Presequence of Precursor MULTIPLE ORGANELLAR RNA EDITING FACTOR3 during Import into Mitochondria from Arabidopsis. Plant Physiology, 2015, 169, 1344-1355.	2.3	30
190	Rice DB : an O ryza Information Portal linking annotation, subcellular location, function, expression, regulation, and evolutionary information for rice and A rabidopsis. Plant Journal, 2013, 76, 1057-1073.	2.8	29
191	Global transcriptome analysis of AtPAP2 - overexpressing Arabidopsisthaliana with elevated ATP. BMC Genomics, 2013, 14, 752.	1.2	29
192	Specificity of leaf mitochondrial and chloroplast processing systems for nuclear-encoded precursor proteins. Plant Molecular Biology, 1991, 16, 283-292.	2.0	28
193	Isolation of a Novel Soybean Gene Encoding a Mitochondrial ATP Synthase Subunit. Archives of Biochemistry and Biophysics, 1994, 313, 235-240.	1.4	28
194	Evidence for a link between translocation and processing during protein import into soybean mitochondria. Biochimica Et Biophysica Acta - Molecular Cell Research, 1996, 1312, 48-54.	1.9	28
195	Mitochondrial Protein Import: Convergent Solutions for Receptor Structure. Current Biology, 2006, 16, R197-R199.	1.8	28
196	Mitochondrial Targeting of the <i>Arabidopsis</i> F1-ATPase γ-Subunit via Multiple Compensatory and Synergistic Presequence Motifs. Plant Cell, 2013, 24, 5037-5057.	3.1	28
197	Inactivation of Mitochondrial Complex I Induces the Expression of a Twin Cysteine Protein that Targets and Affects Cytosolic, Chloroplastidic and Mitochondrial Function. Molecular Plant, 2016, 9, 696-710.	3.9	28
198	Isolation of tissues and preservation of <scp>RNA</scp> from intact, germinated barley grain. Plant Journal, 2017, 91, 754-765.	2.8	28

#	Article	IF	CITATIONS
199	Generation of estrogen receptor mutants with altered ligand specificity for use in establishing a regulatable gene expression system. Journal of Steroid Biochemistry and Molecular Biology, 1996, 58, 3-12.	1.2	27
200	Selectin synthesis and inflammation. Trends in Biochemical Sciences, 1996, 21, 65-69.	3.7	27
201	Plant-Specific Preprotein and Amino Acid Transporter Proteins Are Required for tRNA Import into Mitochondria. Plant Physiology, 2016, 172, 2471-2490.	2.3	27
202	Live single-cell transcriptional dynamics via RNA labelling during the phosphate response in plants. Nature Plants, 2021, 7, 1050-1064.	4.7	27
203	Community engagement or community action: Choosingnotto play the game. Environmental Politics, 2005, 14, 596-610.	3.4	26
204	Extracellular Vesicles from Fusarium graminearum Contain Protein Effectors Expressed during Infection of Corn. Journal of Fungi (Basel, Switzerland), 2021, 7, 977.	1.5	26
205	Just read the message: a model for sorting of proteins between mitochondria and chloroplasts. Trends in Plant Science, 2004, 9, 318-319.	4.3	25
206	Identification of a Dual-Targeted Protein Belonging to the Mitochondrial Carrier Family That Is Required for Early Leaf Development in Rice Â. Plant Physiology, 2013, 161, 2036-2048.	2.3	25
207	Temporal regulation of in vitro import of precursor proteins into tobacco mitochondria. FEBS Letters, 1997, 415, 173-178.	1.3	24
208	The dual targeting ability of type II NAD(P)H dehydrogenases arose early in land plant evolution. BMC Plant Biology, 2013, 13, 100.	1.6	24
209	MPIC: A Mitochondrial Protein Import Components Database for Plant and Non-Plant Species. Plant and Cell Physiology, 2015, 56, e10-e10.	1.5	24
210	A multi-step peptidolytic cascade for amino acid recovery in chloroplasts. Nature Chemical Biology, 2017, 13, 15-17.	3.9	24
211	Accumulation of Newly Synthesized F1 in Vivo in Arabidopsis Mitochondria Provides Evidence for Modular Assembly of the Plant F1Fo ATP Synthase. Journal of Biological Chemistry, 2012, 287, 25749-25757.	1.6	23
212	Next generation sequencing and de novo transcriptomics to study gene evolution. Plant Methods, 2014, 10, 34.	1.9	23
213	Molecular and physiological responses during thermal acclimation of leaf photosynthesis and respiration in rice. Plant, Cell and Environment, 2020, 43, 594-610.	2.8	23
214	Import of precursor proteins intoVicia fabamitochondria. FEBS Letters, 1988, 236, 217-220.	1.3	22
215	The Phosphate Fast-Responsive Genes <i>PECP1</i> and <i>PPsPase1</i> Affect Phosphocholine and Phosphoethanolamine Content. Plant Physiology, 2018, 176, 2943-2962.	2.3	22
216	A Mitochondrial LYR Protein Is Required for Complex I Assembly. Plant Physiology, 2019, 181, 1632-1650.	2.3	22

#	Article	IF	CITATIONS
217	AgriSeqDB: an online RNA-Seq database for functional studies of agriculturally relevant plant species. BMC Plant Biology, 2018, 18, 200.	1.6	21
218	A matrix-located processing peptidase of plant mitochondria. Plant Molecular Biology, 1998, 36, 171-181.	2.0	20
219	Regulatory, Developmental and Tissue Aspects of Mitochondrial Biogenesis in Plants. Plant Biology, 2000, 2, 121-135.	1.8	20
220	Protein import into plant mitochondria: precursor proteins differ in ATP and membrane potential requirements. Plant Molecular Biology, 2001, 45, 317-325.	2.0	20
221	An mRNA Splice Variant of the AFX Gene with Altered Transcriptional Activity. Journal of Biological Chemistry, 2002, 277, 8068-8075.	1.6	20
222	Investigations on the in vitro import ability of mitochondrial precursor proteins synthesized in wheat germ transcription-translation extract. Plant Molecular Biology, 2003, 52, 259-271.	2.0	20
223	REDOX regulation of mitochondrial function in plants. Plant, Cell and Environment, 2012, 35, 271-280.	2.8	19
224	Coordinating Metabolite Changes with Our Perception of Plant Abiotic Stress Responses: Emerging Views Revealed by Integrative—Omic Analyses. Metabolites, 2013, 3, 761-786.	1.3	19
225	Characterization of a novel β-barrel protein (AtOM47) from the mitochondrial outer membrane of <i>Arabidopsis thaliana</i> . Journal of Experimental Botany, 2016, 67, 6061-6075.	2.4	19
226	Arabidopsis DGD1 SUPPRESSOR1 Is a Subunit of the Mitochondrial Contact Site and Cristae Organizing System and Affects Mitochondrial Biogenesis. Plant Cell, 2019, 31, 1856-1878.	3.1	19
227	Noninvasive imaging technologies in plant phenotyping. Trends in Plant Science, 2022, 27, 316-317.	4.3	19
228	Evidence for Ancient Origins of Bowman-Birk Inhibitors from <i>Selaginella moellendorffii</i> . Plant Cell, 2017, 29, 461-473.	3.1	18
229	Accumulation of endogenous peptides triggers a pathogen stress response in <i>Arabidopsis thaliana</i> . Plant Journal, 2018, 96, 705-715.	2.8	18
230	Interplay between Jasmonic Acid, Phosphate Signaling and the Regulation of Glycerolipid Homeostasis in Arabidopsis. Plant and Cell Physiology, 2019, 60, 1260-1273.	1.5	18
231	Temporal tissueâ€specific regulation of transcriptomes during barley (<i>Hordeum vulgare</i>) seed germination. Plant Journal, 2020, 101, 700-715.	2.8	18
232	Dual targeting ability of targeting signals is dependent on the nature of the mature protein. Functional Plant Biology, 2003, 30, 805.	1.1	18
233	Identification of Signals Required for Import of the Soybean FAd Subunit of ATP Synthase into Mitochondria. Plant Molecular Biology, 2004, 54, 193-203.	2.0	17
234	Cloning and characterization of AtNUDT13, a novel mitochondrial <i>Arabidopsis thaliana</i> Nudix hydrolase specific for longâ€chain diadenosine polyphosphates. FEBS Journal, 2007, 274, 4877-4885.	2.2	17

#	Article	IF	CITATIONS
235	An Ancient Peptide Family Buried within Vicilin Precursors. ACS Chemical Biology, 2019, 14, 979-993.	1.6	17
236	Transcriptional and biochemical analyses of gibberellin expression and content in germinated barley grain. Journal of Experimental Botany, 2020, 71, 1870-1884.	2.4	17
237	DNA methylation is involved in acclimation to ironâ€deficiency in rice (<i>Oryza sativa</i>). Plant Journal, 2021, 107, 727-739.	2.8	17
238	Import of the Mammalian Cytochrome P450 (scc) Precursor into Plant Mitochondria. Biochemical and Biophysical Research Communications, 1994, 199, 33-36.	1.0	16
239	Random mutagenesis of human estrogen receptor ligand binding domain identifies mutations that decrease sensitivity to estradiol and increase sensitivity to a diphenol indene-ol compound: Basis for a regulatable expression system. Journal of Steroid Biochemistry and Molecular Biology, 1998, 64, 129-135.	1.2	16
240	Adaptations Required for Mitochondrial Import following Mitochondrial to Nucleus Gene Transfer of Ribosomal Protein S10. Plant Physiology, 2005, 138, 2134-2144.	2.3	16
241	Evidence for interactions between the mitochondrial import apparatus and respiratory chain complexes via Tim21-like proteins in Arabidopsis. Frontiers in Plant Science, 2014, 5, 82.	1.7	16
242	Exploring ligand recognition, selectivity and dynamics of TPR domains of chloroplast Toc64 and mitochondria Om64 from <i>Arabidopsis thaliana</i> . Journal of Molecular Recognition, 2014, 27, 402-414.	1.1	16
243	Torsion-induced injury in rat testes does not affect mitochondrial respiration or the accumulation of mitochondrial mutations. Journal of Developmental and Physical Disabilities, 2000, 23, 347-356.	3.6	15
244	A molecular link between mitochondrial preprotein transporters and respiratory chain complexes. Plant Signaling and Behavior, 2012, 7, 1594-1597.	1.2	15
245	Root Cell-Specific Regulators of Phosphate-Dependent Growth. Plant Physiology, 2017, 174, 1969-1989.	2.3	15
246	ACONITASE 3 is part of theANAC017 transcription factor-dependent mitochondrial dysfunction response. Plant Physiology, 2021, 186, 1859-1877.	2.3	15
247	The retrograde signaling regulator ANAC017 recruits the MKK9–MPK3/6, ethylene, and auxin signaling pathways to balance mitochondrial dysfunction with growth. Plant Cell, 2022, 34, 3460-3481.	3.1	15
248	Cloning of ndhK from soybean chloroplasts using antibodies raised to mitochondrial complex I. Plant Molecular Biology, 1992, 20, 887-895.	2.0	14
249	Respiratory gene expression in soybean cotyledons during post-germinative development. Plant Molecular Biology, 2003, 51, 745-755.	2.0	14
250	Protein Import into Plant Mitochondria. , 2011, , 261-287.		14
251	OsbHLH061 links TOPLESS/TOPLESSâ€RELATED repressor proteins with POSITIVE REGULATOR OF IRON HOMEOSTASIS 1 to maintain iron homeostasis in rice. New Phytologist, 2022, 234, 1753-1769.	3.5	14
252	What makes a mitochondrion?. Genome Biology, 2003, 4, 218.	13.9	13

#	Article	IF	CITATIONS
253	GWAS on multiple traits identifies mitochondrial ACONITASE3 as important for acclimation to submergence stress. Plant Physiology, 2022, 188, 2039-2058.	2.3	13
254	Enhanced reactive oxygen detoxification occurs in saltâ€stressed soybean roots expressing <scp><i>GmSALT3</i></scp> . Physiologia Plantarum, 2022, 174, e13709.	2.6	13
255	Processing of precursor proteins by plant mitochondria. Archives of Biochemistry and Biophysics, 1990, 279, 281-285.	1.4	12
256	Ligand Recognition by the TPR Domain of the Import Factor Toc64 from Arabidopsis thaliana. PLoS ONE, 2013, 8, e83461.	1.1	12
257	Genes That Mediate Starch Metabolism in Developing and Germinated Barley Grain. Frontiers in Plant Science, 2021, 12, 641325.	1.7	12
258	ModuleFinder and CoReg: alternative tools for linking gene expression modules with promoter sequences motifs to uncover gene regulation mechanisms in plants. Plant Methods, 2006, 2, 8.	1.9	11
259	Isolation and Respiratory Measurements of Mitochondria from Arabidopsis thaliana . Journal of Visualized Experiments, 2018, , .	0.2	11
260	Composition of Mitochondrial Complex I during the Critical Node of Seed Aging in Oryza sativa. Journal of Plant Physiology, 2019, 236, 7-14.	1.6	11
261	The genetic origin of evolidine, the first cyclopeptide discovered in plants, and related orbitides. Journal of Biological Chemistry, 2020, 295, 14510-14521.	1.6	11
262	Cross-species transcriptomic analyses reveals common and opposite responses in Arabidopsis, rice and barley following oxidative stress and hormone treatment. BMC Plant Biology, 2022, 22, 62.	1.6	11
263	Regional Community-Based Planning: The Challenge of Participatory Environmental Governance. Australasian Journal of Environmental Management, 2005, 12, 126-135.	0.6	10
264	Analysis of Spatio-Temporal Transcriptome Profiles of Soybean (Glycine max) Tissues during Early Seed Development. International Journal of Molecular Sciences, 2020, 21, 7603.	1.8	9
265	Cyclic Peptides in Seed of <i>Annona muricata</i> Are Ribosomally Synthesized. Journal of Natural Products, 2020, 83, 1167-1173.	1.5	9
266	Knockdown of Succinate Dehydrogenase Assembly Factor 2 Induces Reactive Oxygen Species–Mediated Auxin Hypersensitivity Causing pH-Dependent Root Elongation. Plant and Cell Physiology, 2021, 62, 1185-1198.	1.5	9
267	Diverse phosphate and auxin transport loci distinguish phosphate tolerant from sensitive Arabidopsis accessions. Plant Physiology, 2021, 187, 2656-2673.	2.3	9
268	Mitochondrial protein import in plants. , 1998, , 311-338.		9
269	The multiple alternative oxidase proteins of soybean. Functional Plant Biology, 1999, 26, 337.	1.1	9
270	Quantification of the common deletion in human testicular mitochondrial DNA by competitive PCR assay using a chimaeric competitor. Molecular Human Reproduction, 2001, 7, 301-306.	1.3	8

#	Article	IF	CITATIONS
271	Identification and characterization of Arabidopsis thaliana mitochondrial F1F0-ATPase inhibitor factor 1. Journal of Plant Physiology, 2020, 254, 153264.	1.6	8
272	The mitochondrial AAA protease FTSH3 regulates Complex I abundance by promoting its disassembly. Plant Physiology, 2021, 186, 599-610.	2.3	8
273	Import Pathway of Nuclear-Encoded Cytochrome c Oxidase Subunit 2 Using Yeast as a Model. Plant Biology, 2003, 5, 481-490.	1.8	7
274	Building the Powerhouse. Plant Signaling and Behavior, 2007, 2, 428-430.	1.2	7
275	Cloning, Analysis and Inactivation of thendhKGene Encoding a Subunit of NADH Quinone Oxidoreductase fromAnabaenaPCC 7120. FEBS Journal, 1996, 240, 173-180.	0.2	6
276	Chromosomal clustering of nuclear genes encoding mitochondrial and chloroplast proteins in Arabidopsis. Trends in Genetics, 2006, 22, 589-593.	2.9	6
277	Conserved and Opposite Transcriptome Patterns during Germination in Hordeum vulgare and Arabidopsis thaliana. International Journal of Molecular Sciences, 2020, 21, 7404.	1.8	6
278	The mitochondrial <scp>LYR</scp> protein <scp>SDHAF1</scp> is required for succinate dehydrogenase activity in Arabidopsis. Plant Journal, 2022, 110, 499-512.	2.8	6
279	A Transcriptomic Signature of Mouse Liver Progenitor Cells. Stem Cells International, 2016, 2016, 1-15.	1.2	5
280	Transcriptional variation is associated with differences in shoot sodium accumulation in distinct barley varieties. Environmental and Experimental Botany, 2019, 166, 103812.	2.0	5
281	Legume Alternative Oxidase Isoforms Show Differential Sensitivity to Pyruvate Activation. Frontiers in Plant Science, 2021, 12, 813691.	1.7	5
282	Toward deciphering the genome-wide transcriptional responses of rice to phosphate starvation and recovery. Plant Signaling and Behavior, 2014, 9, e28319.	1.2	4
283	Regional Community-Based Planning: The Challenge of Participatory Environmental Governance. Australasian Journal of Environmental Management, 2005, 12, 126-135.	0.6	3
284	Laser-Capture Microdissection RNA-Sequencing for Spatial and Temporal Tissue-Specific Gene Expression Analysis in Plants. Journal of Visualized Experiments, 2020, , .	0.2	3
285	Protein Targeting and Import. Advances in Photosynthesis and Respiration, 2004, , 31-54.	1.0	3
286	Hot PUMPing plants ?. Nature, 1995, 376, 220-220.	13.7	2
287	Differentially expressed DNA sequences following recovery from unilateral testicular torsion in rat. Biochimica Ét Biophysica Acta - Molecular Basis of Disease, 2001, 1535, 192-199.	1.8	2

288 Import of Nuclear-Encoded Mitochondrial Proteins. , 0, , 97-140.

#	Article	IF	CITATIONS
289	Exploring Multicollinearity Using a Random Matrix Theory Approach. Statistical Applications in Genetics and Molecular Biology, 2012, 11, Article 15.	0.2	2
290	The Design and Structure of Outer Membrane Receptors from Peroxisomes, Mitochondria, and Chloroplasts. Structure, 2015, 23, 1783-1800.	1.6	2
291	Developmental normalization of phenomics data generated by high throughput plant phenotyping systems. Plant Methods, 2020, 16, 111.	1.9	2
292	Plant mitochondrial protein import: mechanisms and control. Functional Plant Biology, 1999, 26, 725.	1.1	2
293	scCloudMine: A cloud-based app for visualization, comparison, and exploration of single-cell transcriptomic data. Plant Communications, 2022, 3, 100302.	3.6	2
294	Assessing Modularity Using a Random Matrix Theory Approach. Statistical Applications in Genetics and Molecular Biology, 2011, 10, .	0.2	1
295	Evolution of Protein Import Pathways. Advances in Botanical Research, 2012, , 315-346.	0.5	1
296	Expression Analysis of Mitochondrial Components in a Variety of Plant Species Using Real-Time Quantitative PCR. , 2004, , 61-72.		0
297	Plant Mitochondrial Transcriptomics by Quantitative RT-PCR. Methods in Molecular Biology, 2007, 372, 529-542.	0.4	о