
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3607736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prognostic serum biomarkers in cancer patients with COVID-19: A systematic review. Translational Oncology, 2022, 21, 101443.	3.7	5
2	γδT cells in 3D culture: The potential use in the therapeutics development. Clinical and Translational Discovery, 2022, 2, .	0.5	0
3	Ribonuclease 7-driven activation of ROS1 is a potential therapeutic target in hepatocellular carcinoma. Journal of Hepatology, 2021, 74, 907-918.	3.7	14
4	Activated T cell-derived exosomal PD-1 attenuates PD-L1-induced immune dysfunction in triple-negative breast cancer. Oncogene, 2021, 40, 4992-5001.	5.9	68
5	Mutant p53 Attenuates Oxidative Phosphorylation and Facilitates Cancer Stemness through Downregulating miR-200c–PCK2 Axis in Basal-Like Breast Cancer. Molecular Cancer Research, 2021, 19, 1900-1916.	3.4	14
6	Rapid generation of mouse model for emerging infectious disease with the case of severe COVID-19. PLoS Pathogens, 2021, 17, e1009758.	4.7	17
7	PRMT1 enhances oncogenic arginine methylation of NONO in colorectal cancer. Oncogene, 2021, 40, 1375-1389.	5.9	44
8	NK cell receptor and ligand composition influences the clearance of SARS-CoV-2. Journal of Clinical Investigation, 2021, 131, .	8.2	26
9	Epithelial-mesenchymal transition induced by SARS-CoV-2 required transcriptional upregulation of Snail. American Journal of Cancer Research, 2021, 11, 2278-2290.	1.4	7
10	Hyperglycosylated spike of SARS-CoV-2 gamma variant induces breast cancer metastasis. American Journal of Cancer Research, 2021, 11, 4994-5005.	1.4	0
11	Targeting conserved N-glycosylation blocks SARS-CoV-2 variant infection in vitro. EBioMedicine, 2021, 74, 103712.	6.1	37
12	PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nature Cell Biology, 2020, 22, 1264-1275.	10.3	508
13	SLFN11 inhibits hepatocellular carcinoma tumorigenesis and metastasis by targeting RPS4X via mTOR pathway. Theranostics, 2020, 10, 4627-4643.	10.0	61
14	Targeting Glycosylated PD-1 Induces Potent Antitumor Immunity. Cancer Research, 2020, 80, 2298-2310.	0.9	87
15	Inhibition of c-MET upregulates PD-L1 expression in lung adenocarcinoma. American Journal of Cancer Research, 2020, 10, 564-571.	1.4	5
16	Inhibition of CDK2 reduces EZH2 phosphorylation and reactivates ERα expression in high-grade serous ovarian carcinoma. American Journal of Cancer Research, 2020, 10, 1194-1206.	1.4	4
17	Mechanisms Controlling PD-L1 Expression in Cancer. Molecular Cell, 2019, 76, 359-370.	9.7	501
18	Disruption of tumour-associated macrophage trafficking by the osteopontin-induced colony-stimulating factor-1 signalling sensitises hepatocellular carcinoma to anti-PD-L1 blockade. Gut, 2019, 68, 1653-1666.	12.1	246

#	Article	IF	CITATIONS
19	MET Inhibitors Promote Liver Tumor Evasion of the Immune Response by Stabilizing PDL1. Gastroenterology, 2019, 156, 1849-1861.e13.	1.3	131
20	Palmitoylation stabilizes PD-L1 to promote breast tumor growth. Cell Research, 2019, 29, 83-86.	12.0	158
21	IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion. Journal of Clinical Investigation, 2019, 129, 3324-3338.	8.2	209
22	Synergism of PARP inhibitor fluzoparib (HS10160) and MET inhibitor HS10241 in breast and ovarian cancer cells. American Journal of Cancer Research, 2019, 9, 608-618.	1.4	12
23	Metformin reverses PARP inhibitors-induced epithelial-mesenchymal transition and PD-L1 upregulation in triple-negative breast cancer. American Journal of Cancer Research, 2019, 9, 800-815.	1.4	17
24	Eradication of Triple-Negative Breast Cancer Cells by Targeting Glycosylated PD-L1. Cancer Cell, 2018, 33, 187-201.e10.	16.8	381
25	Decreased expression of microRNA-26b in locally advanced and inflammatory breast cancer. Human Pathology, 2018, 77, 121-129.	2.0	20
26	Posttranslational Modifications of PD-L1 and Their Applications in Cancer Therapy. Cancer Research, 2018, 78, 6349-6353.	0.9	183
27	STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nature Communications, 2018, 9, 1908.	12.8	282
28	Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Research, 2018, 28, 862-864.	12.0	345
29	Activation of phagocytosis by immune checkpoint blockade. Frontiers of Medicine, 2018, 12, 473-480.	3.4	15
30	Metformin Promotes Antitumor Immunity via Endoplasmic-Reticulum-Associated Degradation of PD-L1. Molecular Cell, 2018, 71, 606-620.e7.	9.7	491
31	Inhibition of ATR downregulates PD-L1 and sensitizes tumor cells to T cell-mediated killing. American Journal of Cancer Research, 2018, 8, 1307-1316.	1.4	42
32	Deglycosylation of PD-L1 by 2-deoxyglucose reverses PARP inhibitor-induced immunosuppression in triple-negative breast cancer. American Journal of Cancer Research, 2018, 8, 1837-1846.	1.4	26
33	PARP Inhibitor Upregulates PD-L1 Expression and Enhances Cancer-Associated Immunosuppression. Clinical Cancer Research, 2017, 23, 3711-3720.	7.0	710
34	Rational combination of immunotherapy for triple negative breast cancer treatment. Chinese Clinical Oncology, 2017, 6, 54-54.	1.2	10
35	Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nature Communications, 2016, 7, 12632.	12.8	648
36	Deubiquitination and Stabilization of PD-L1 by CSN5. Cancer Cell, 2016, 30, 925-939.	16.8	538

#	Article	IF	CITATIONS
37	Oncogenic Functions of Gli1 in Pancreatic Adenocarcinoma Are Supported by Its PRMT1-Mediated Methylation. Cancer Research, 2016, 76, 7049-7058.	0.9	51
38	AKT1 Inhibits Epithelial-to-Mesenchymal Transition in Breast Cancer through Phosphorylation-Dependent Twist1 Degradation. Cancer Research, 2016, 76, 1451-1462.	0.9	65
39	EGFR Signaling Enhances Aerobic Glycolysis in Triple-Negative Breast Cancer Cells to Promote Tumor Growth and Immune Escape. Cancer Research, 2016, 76, 1284-1296.	0.9	190
40	Severe Hepatitis Promotes Hepatocellular Carcinoma Recurrence via NF-κB Pathway-Mediated Epithelial–Mesenchymal Transition after Resection. Clinical Cancer Research, 2016, 22, 1800-1812.	7.0	25
41	GSK3β inactivation promotes the oncogenic functions of EZH2 and enhances methylation of H3K27 in human breast cancers. Oncotarget, 2016, 7, 57131-57144.	1.8	35
42	Selective expression of constitutively active pro-apoptotic protein BikDD gene in primary mammary tumors inhibits tumor growth and reduces tumor initiating cells. American Journal of Cancer Research, 2015, 5, 3624-34.	1.4	1
43	MDM2-mediated degradation of SIRT6 phosphorylated by AKT1 promotes tumorigenesis and trastuzumab resistance in breast cancer. Science Signaling, 2014, 7, ra71.	3.6	90
44	Definition of PKC-α, CDK6, and MET as Therapeutic Targets in Triple-Negative Breast Cancer. Cancer Research, 2014, 74, 4822-4835.	0.9	61
45	Activation of Keap1/Nrf2 signaling pathway by nuclear epidermal growth factor receptor in cancer cells. American Journal of Translational Research (discontinued), 2014, 6, 649-63.	0.0	16
46	Epithelial–Mesenchymal Transition Induced by TNF-α Requires NF-κB–Mediated Transcriptional Upregulation of Twist1. Cancer Research, 2012, 72, 1290-1300.	0.9	406
47	The Crosstalk of mTOR/S6K1 and Hedgehog Pathways. Cancer Cell, 2012, 21, 374-387.	16.8	322
48	Acetylation of EGF receptor contributes to tumor cell resistance to histone deacetylase inhibitors. Biochemical and Biophysical Research Communications, 2011, 404, 68-73.	2.1	39
49	p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nature Cell Biology, 2011, 13, 317-323.	10.3	674
50	APOBEC3G promotes liver metastasis in an orthotopic mouse model of colorectal cancer and predicts human hepatic metastasis. Journal of Clinical Investigation, 2011, 121, 4526-4536.	8.2	117
51	Human ADA3 regulates RARÂ transcriptional activity through direct contact between LxxLL motifs and the receptor coactivator pocket. Nucleic Acids Research, 2010, 38, 5291-5303.	14.5	13
52	Preferential Physical and Functional Interaction of Pregnane X Receptor with the SMRTα Isoform. Molecular Pharmacology, 2009, 75, 363-373.	2.3	11
53	The Major Human Pregnane X Receptor (PXR) Splice Variant, PXR.2, Exhibits Significantly Diminished Ligand-Activated Transcriptional Regulation. Drug Metabolism and Disposition, 2009, 37, 1295-1304.	3.3	41
54	KEAP1 E3 Ligase-Mediated Downregulation of NF-κB Signaling by Targeting IKKβ. Molecular Cell, 2009, 36, 131-140.	9.7	344

#	Article	IF	CITATIONS
55	Identification of ANKRD11 as a p53 coactivator. Journal of Cell Science, 2008, 121, 3541-3552.	2.0	72
56	Ankyrin repeats-containing cofactors interact with ADA3 and modulate its co-activator function. Biochemical Journal, 2008, 413, 349-357.	3.7	16
57	Characterization of transcriptional regulatory domains of ankyrin repeat cofactor-1. Biochemical and Biophysical Research Communications, 2007, 358, 1034-1040.	2.1	45
58	Subcellular localization of ankyrin repeats cofactor-1 regulates its corepressor activity. Journal of Cellular Biochemistry, 2007, 101, 1301-1315.	2.6	7
59	Regulation and Binding of Pregnane X Receptor by Nuclear Receptor Corepressor Silencing Mediator of Retinoid and Thyroid Hormone Receptors (SMRT). Molecular Pharmacology, 2006, 69, 99-108.	2.3	64
60	Identification of a Novel Family of Ankyrin Repeats Containing Cofactors for p160 Nuclear Receptor Coactivators. Journal of Biological Chemistry, 2004, 279, 33799-33805.	3.4	96