List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3606013/publications.pdf Version: 2024-02-01

SOUICHIDO ΚΑΤΟ

#	Article	IF	CITATIONS
1	Reductive Transformation of Fe(III) (oxyhydr)Oxides by Mesophilic Homoacetogens in the Genus Sporomusa. Frontiers in Microbiology, 2021, 12, 600808.	3.5	15
2	Ferrihydrite Reduction by Photosynthetic Synechocystis sp. PCC 6803 and Its Correlation With Electricity Generation. Frontiers in Microbiology, 2021, 12, 650832.	3.5	4
3	Complete Genome Sequence of Alphaproteobacteria Bacterium Strain SO-S41, Isolated from Forest Soil. Microbiology Resource Announcements, 2021, 10, e0053621.	0.6	2
4	An iron corrosion-assisted H2-supplying system: a culture method for methanogens and acetogens under low H2 pressures. Scientific Reports, 2020, 10, 19124.	3.3	6
5	Rapid Enrichment and Isolation of Polyphosphate-Accumulating Organisms Through 4'6-Diamidino-2-Phenylindole (DAPI) Staining With Fluorescence-Activated Cell Sorting (FACS). Frontiers in Microbiology, 2020, 11, 793.	3.5	8
6	Isolation and Genomic Characterization of a Proteobacterial Methanotroph Requiring Lanthanides. Microbes and Environments, 2020, 35, n/a.	1.6	18
7	Improved Isolation of Uncultured Anaerobic Bacteria using Medium Prepared with Separate Sterilization of Agar and Phosphate. Microbes and Environments, 2020, 35, n/a.	1.6	9
8	Microbial Community Analysis of Anaerobic Enrichment Cultures Supplemented with Bacterial Peptidoglycan as the Sole Substrate. Microbes and Environments, 2020, 35, n/a.	1.6	7
9	Electrochemical Interactions Between Microorganisms and Conductive Particles. , 2020, , 73-80.		0
10	Enhancement of methanogenesis by electric syntrophy with biogenic ironâ€sulfide minerals. MicrobiologyOpen, 2019, 8, e00647.	3.0	28
11	The endogenous redox rhythm is controlled by a central circadian oscillator in cyanobacterium Synechococcus elongatus PCC7942. Photosynthesis Research, 2019, 142, 203-210.	2.9	5
12	Conductive Iron Oxides Promote Methanogenic Acetate Degradation by Microbial Communities in a High-Temperature Petroleum Reservoir. Microbes and Environments, 2019, 34, 95-98.	1.6	12
13	Prediction of Neighbor-Dependent Microbial Interactions From Limited Population Data. Frontiers in Microbiology, 2019, 10, 3049.	3.5	8
14	Direct Interspecies Electron Transfer Mediated by Graphene Oxide-Based Materials. Frontiers in Microbiology, 2019, 10, 3068.	3.5	28
15	Electrochemical biotechnologies minimizing the required electrode assemblies. Current Opinion in Biotechnology, 2018, 50, 182-188.	6.6	29
16	Extracellular Electron Transfer via Outer Membrane Cytochromes in a Methanotrophic Bacterium Methylococcus capsulatus (Bath). Frontiers in Microbiology, 2018, 9, 2905.	3.5	38
17	Efficient Counterselection for Methylococcus capsulatus (Bath) by Using a Mutated <i>pheS</i> Gene. Applied and Environmental Microbiology, 2018, 84,	3.1	24
18	Isolation of Previously Uncultured Slow-Growing Bacteria by Using a Simple Modification in the Preparation of Agar Media. Applied and Environmental Microbiology, 2018, 84, .	3.1	68

#	Article	IF	CITATIONS
19	Specific Interaction between Redox Phospholipid Polymers and Plastoquinone in Photosynthetic Electron Transport Chain. ChemPhysChem, 2017, 18, 878-881.	2.1	8
20	Real-time monitoring of intracellular redox changes in Methylococcus capsulatus (Bath) for efficient bioconversion of methane to methanol. Bioresource Technology, 2017, 241, 1157-1161.	9.6	18
21	Restoration of the growth of Escherichia coli under K+-deficient conditions by Cs+ incorporation via the K+ transporter Kup. Scientific Reports, 2017, 7, 1965.	3.3	1
22	Cathodic supply of electrons to living microbial cells via cytocompatible redox-active polymers. Electrochemistry Communications, 2017, 75, 17-20.	4.7	20
23	Extracellular electron transfer in acetogenic bacteria and its application for conversion of carbon dioxide into organic compounds. Applied Microbiology and Biotechnology, 2017, 101, 6301-6307.	3.6	34
24	Influence of Anode Potentials on Current Generation and Extracellular Electron Transfer Paths of Geobacter Species. International Journal of Molecular Sciences, 2017, 18, 108.	4.1	30
25	Culture-Dependent and -Independent Identification of Polyphosphate-Accumulating <i>Dechloromonas</i> spp. Predominating in a Full-Scale Oxidation Ditch Wastewater Treatment Plant. Microbes and Environments, 2016, 31, 449-455.	1.6	64
26	Enrichment and isolation of Flavobacterium strains with tolerance to high concentrations of cesium ion. Scientific Reports, 2016, 6, 20041.	3.3	27
27	Microbial extracellular electron transfer and its relevance to iron corrosion. Microbial Biotechnology, 2016, 9, 141-148.	4.2	122
28	Comprehensive metabolomic analyses of anode-respiring Geobacter sulfurreducens cells: The impact of anode-respiration activity on intracellular metabolite levels. Process Biochemistry, 2016, 51, 34-38.	3.7	22
29	Biotechnological Aspects of Microbial Extracellular Electron Transfer. Microbes and Environments, 2015, 30, 133-139.	1.6	115
30	Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil. Scientific Reports, 2015, 5, 14295.	3.3	62
31	Electrochemical Detection of Circadian Redox Rhythm in Cyanobacterial Cells via Extracellular Electron Transfer. Plant and Cell Physiology, 2015, 56, 1053-1058.	3.1	14
32	Conductive iron oxides accelerate thermophilic methanogenesis from acetate and propionate. Journal of Bioscience and Bioengineering, 2015, 119, 678-682.	2.2	150
33	Microbial interspecies interactions: recent findings in syntrophic consortia. Frontiers in Microbiology, 2015, 6, 477.	3.5	200
34	Isolation of Acetogenic Bacteria That Induce Biocorrosion by Utilizing Metallic Iron as the Sole Electron Donor. Applied and Environmental Microbiology, 2015, 81, 67-73.	3.1	129
35	The effects of elevated CO2 concentration on competitive interaction between aceticlastic and syntrophic methanogenesis in a model microbial consortium. Frontiers in Microbiology, 2014, 5, 575.	3.5	23
36	Regulation of the Cyanobacterial Circadian Clock by Electrochemically Controlled Extracellular Electron Transfer. Angewandte Chemie - International Edition, 2014, 53, 2208-2211.	13.8	27

#	Article	IF	CITATIONS
37	Extracellular Electron Transfer Enhances Polyhydroxybutyrate Productivity in <i>Ralstonia eutropha</i> . Environmental Science and Technology Letters, 2014, 1, 40-43.	8.7	33
38	Reduction of Fe(III) oxides by phylogenetically and physiologically diverse thermophilic methanogens. FEMS Microbiology Ecology, 2014, 89, 637-645.	2.7	34
39	Physiological and Transcriptomic Analyses of the Thermophilic, Aceticlastic Methanogen <i>Methanosaeta thermophila</i> Responding to Ammonia Stress. Microbes and Environments, 2014, 29, 162-167.	1.6	44
40	Inhibitory Effects of Ferrihydrite on a Thermophilic Methanogenic Community. Microbes and Environments, 2014, 29, 227-230.	1.6	21
41	Iron-Oxide Minerals Affect Extracellular Electron-Transfer Paths of <i>Geobacter</i> spp Microbes and Environments, 2013, 28, 141-148.	1.6	82
42	Microbial interspecies electron transfer via electric currents through conductive minerals. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10042-10046.	7.1	505
43	Methanogenesis facilitated by electric syntrophy via (semi)conductive ironâ€oxide minerals. Environmental Microbiology, 2012, 14, 1646-1654.	3.8	516
44	Negative Faradaic Resistance in Extracellular Electron Transfer by Anode-Respiring <i>Geobacter sulfurreducens</i> Cells. Environmental Science & Technology, 2011, 45, 10163-10169.	10.0	37
45	Ecological and Evolutionary Interactions in Syntrophic Methanogenic Consortia. Microbes and Environments, 2010, 25, 145-151.	1.6	88
46	Determinative Factors of Competitive Advantage between Aerobic Bacteria for Niches at the Air-Liquid Interface. Microbes and Environments, 2010, 25, 317-320.	1.6	19
47	Redoxâ€Responsive Switching in Bacterial Respiratory Pathways Involving Extracellular Electron Transfer. ChemSusChem, 2010, 3, 1253-1256.	6.8	49
48	Electrical Current Generation across a Black Smoker Chimney. Angewandte Chemie - International Edition, 2010, 49, 7692-7694.	13.8	80
49	Respiratory interactions of soil bacteria with (semi)conductive ironâ€oxide minerals. Environmental Microbiology, 2010, 12, 3114-3123.	3.8	167
50	Factors Affecting Electric Output from Rice-Paddy Microbial Fuel Cells. Bioscience, Biotechnology and Biochemistry, 2010, 74, 1271-1273.	1.3	103
51	Analysis of Gene Transcripts in a Crude Oil-Degrading Marine Microbial Community. Bioscience, Biotechnology and Biochemistry, 2009, 73, 1665-1668.	1.3	7
52	Substrateâ€dependent transcriptomic shifts in <i>Pelotomaculum thermopropionicum</i> grown in syntrophic coâ€culture with <i>Methanothermobacter thermautotrophicus</i> . Microbial Biotechnology, 2009, 2, 575-584.	4.2	43
53	Intertwined interspecies relationships: approaches to untangle the microbial network. Environmental Microbiology, 2009, 11, 2963-2969.	3.8	66
54	Flagellum Mediates Symbiosis. Science, 2009, 323, 1574-1574.	12.6	116

#	Article	IF	CITATIONS
55	ãfjã,¿ãf³ç™ºé…µå…±ç"ϔç³»ã®é€²åŒ−ãë生å≃æ^¦ç•¥. Kagaku To Seibutsu, 2009, 47, 253-260.	0.0	1
56	Network Relationships of Bacteria in a Stable Mixed Culture. Microbial Ecology, 2008, 56, 403-411.	2.8	81
57	Comparative transcriptome analysis of responses of <i>Methanothermobacter thermautotrophicus</i> to different environmental stimuli. Environmental Microbiology, 2008, 10, 893-905.	3.8	52
58	The genome of <i>Pelotomaculum thermopropionicum</i> reveals niche-associated evolution in anaerobic microbiota. Genome Research, 2008, 18, 442-448.	5.5	117
59	Stable Coexistence of Five Bacterial Strains as a Cellulose-Degrading Community. Applied and Environmental Microbiology, 2005, 71, 7099-7106.	3.1	239
60	Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 2043-2047.	1.7	108
61	Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiology Ecology, 2004, 51, 133-142.	2.7	163