
Stuart Brierley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3605794/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Olorinab (APD371), a peripherally acting, highly selective, full agonist of the cannabinoid receptor 2, reduces colitis-induced acute and chronic visceral hypersensitivity in rodents. Pain, 2022, 163, e72-e86.	4.2	18
2	Guanylate cyclase-C agonists as peripherally acting treatments of chronic visceral pain. Trends in Pharmacological Sciences, 2022, 43, 110-122.	8.7	8
3	Orai1―and Orai2― but not Orai3―nediated <i>I</i> _{CRAC} is regulated by intracellular pH. Journal of Physiology, 2022, 600, 623-643.	2.9	4
4	TGR5 agonists induce peripheral and central hypersensitivity to bladder distension. Scientific Reports, 2022, 12, .	3.3	2
5	Food for thought about the immune drivers of gut pain. Nature, 2021, 590, 41-43.	27.8	1
6	A mouse model of endometriosis that displays vaginal, colon, cutaneous, and bladder sensory comorbidities. FASEB Journal, 2021, 35, e21430.	0.5	10
7	Activation of MrgprA3 and MrgprC11 on Bladder-Innervating Afferents Induces Peripheral and Central Hypersensitivity to Bladder Distension. Journal of Neuroscience, 2021, 41, 3900-3916.	3.6	9
8	Pruritogenic mechanisms and gut sensation: putting the "irritant―into irritable bowel syndrome. American Journal of Physiology - Renal Physiology, 2021, 320, G1131-G1141.	3.4	6
9	Pharmacological Inhibition of the Voltage-Gated Sodium Channel NaV1.7 Alleviates Chronic Visceral Pain in a Rodent Model of Irritable Bowel Syndrome. ACS Pharmacology and Translational Science, 2021, 4, 1362-1378.	4.9	10
10	Design of a Stable Cyclic Peptide Analgesic Derived from Sunflower Seeds that Targets the κ-Opioid Receptor for the Treatment of Chronic Abdominal Pain. Journal of Medicinal Chemistry, 2021, 64, 9042-9055.	6.4	17
11	Pharmacological modulation of voltage-gated sodium (NaV) channels alters nociception arising from the female reproductive tract. Pain, 2021, 162, 227-242.	4.2	9
12	A spider-venom peptide with multitarget activity on sodium and calcium channels alleviates chronic visceral pain in a model of irritable bowel syndrome. Pain, 2021, 162, 569-581.	4.2	28
13	Clodronate Treatment Prevents Vaginal Hypersensitivity in a Mouse Model of Vestibulodynia. Frontiers in Cellular and Infection Microbiology, 2021, 11, 784972.	3.9	3
14	A syngeneic inoculation mouse model of endometriosis that develops multiple comorbid visceral and cutaneous pain like behaviours. Pain, 2021, Publish Ahead of Print, .	4.2	6
15	Innate immune response to bacterial urinary tract infection sensitises high-threshold bladder afferents and recruits silent nociceptors. Pain, 2020, 161, 202-210.	4.2	19
16	Histamine induces peripheral and central hypersensitivity to bladder distension via the histamine H ₁ receptor and TRPV1. American Journal of Physiology - Renal Physiology, 2020, 318, F298-F314.	2.7	42
17	Identification of a Quorum Sensing-Dependent Communication Pathway Mediating Bacteria-Gut-Brain Cross Talk. IScience, 2020, 23, 101695.	4.1	18
18	Experimentally Induced Bladder Permeability Evokes Bladder Afferent Hypersensitivity in the Absence of Inflammation. Frontiers in Neuroscience, 2020, 14, 590871.	2.8	8

#	Article	IF	CITATIONS
19	Mo1146 CHRONIC INTRA-COLONIC LINACLOTIDE ADMINISTRATION ALTERS GLIAL ACTIVATION IN A MOUSE MODEL OF CHRONIC VISCERAL HYPERSENSITIVITY. Gastroenterology, 2020, 158, S-803.	1.3	1
20	Pain in Endometriosis. Frontiers in Cellular Neuroscience, 2020, 14, 590823.	3.7	95
21	Structure, Function, and Therapeutic Potential of the Trefoil Factor Family in the Gastrointestinal Tract. ACS Pharmacology and Translational Science, 2020, 3, 583-597.	4.9	17
22	Gut nociceptors: sentinels promoting host defense. Cell Research, 2020, 30, 279-280.	12.0	3
23	Effects and sites of action of a M1 receptor positive allosteric modulator on colonic motility in rats and dogs compared with 5â€HT 4 agonism and cholinesterase inhibition. Neurogastroenterology and Motility, 2020, 32, e13866.	3.0	4
24	Gastrointestinal Sensation; General Principles. , 2020, , 701-710.		0
25	Serotonin exerts a direct modulatory role on bladder afferent firing in mice. Journal of Physiology, 2019, 597, 5247-5264.	2.9	17
26	Purinergic receptor mediated calcium signalling in urothelial cells. Scientific Reports, 2019, 9, 16101.	3.3	12
27	Sa1677 – Chronic Colonic Administration of the Guanylate Cyclase-C Agonist Linaclotide Attenuates Colitis Induced Bladder Afferent Hyperactivity. Gastroenterology, 2019, 156, S-363.	1.3	1
28	Su1578 – Chronic Intracolonic Administration of Linaclotide Inhibits Nociceptive Signaling in a Mouse Model of Chronic Visceral Hypersensitivity. Gastroenterology, 2019, 156, S-570.	1.3	2
29	Colonic afferent input and dorsal horn neuron activation differs between the thoracolumbar and lumbosacral spinal cord. American Journal of Physiology - Renal Physiology, 2019, 317, G285-G303.	3.4	30
30	Na _V 1.6 regulates excitability of mechanosensitive sensory neurons. Journal of Physiology, 2019, 597, 3751-3768.	2.9	31
31	Translating peripheral bladder afferent mechanosensitivity to neuronal activation within the lumbosacral spinal cord of mice. Pain, 2019, 160, 793-804.	4.2	25
32	Trefoil Factor Family: Unresolved Questions and Clinical Perspectives. Trends in Biochemical Sciences, 2019, 44, 387-390.	7.5	52
33	Linaclotide treatment reduces endometriosis-associated vaginal hyperalgesia and mechanical allodynia through viscerovisceral cross-talk. Pain, 2019, 160, 2566-2579.	4.2	25
34	Visceral Pain. Annual Review of Physiology, 2019, 81, 261-284.	13.1	159
35	Activation of pruritogenic TGR5, MrgprA3, and MrgprC11 on colon-innervating afferents induces visceral hypersensitivity. JCI Insight, 2019, 4, .	5.0	59
36	Coâ€expression of μ and δ opioid receptors by mouse colonic nociceptors. British Journal of Pharmacology, 2018, 175, 2622-2634.	5.4	25

#	Article	IF	CITATIONS
37	Voltageâ€gated sodium channels: (Na _V)igating the field to determine their contribution to visceral nociception. Journal of Physiology, 2018, 596, 785-807.	2.9	36
38	Protease-activated receptor 1 is implicated in irritable bowel syndrome mediators–induced signaling to thoracic human sensory neurons. Pain, 2018, 159, 1257-1267.	4.2	31
39	Contribution of membrane receptor signalling to chronic visceral pain. International Journal of Biochemistry and Cell Biology, 2018, 98, 10-23.	2.8	29
40	Cyclic analogues of α onotoxin Vc1.1 inhibit colonic nociceptors and provide analgesia in a mouse model of chronic abdominal pain. British Journal of Pharmacology, 2018, 175, 2384-2398.	5.4	36
41	Cross-organ sensitization between the colon and bladder: to pee or not to pee?. American Journal of Physiology - Renal Physiology, 2018, 314, G301-G308.	3.4	44
42	Spinal Afferent Innervation of the Colon and Rectum. Frontiers in Cellular Neuroscience, 2018, 12, 467.	3.7	78
43	Mechanisms Underlying Overactive Bladder and Interstitial Cystitis/Painful Bladder Syndrome. Frontiers in Neuroscience, 2018, 12, 931.	2.8	84
44	Pain-Causing Venom Peptides: Insights into Sensory Neuron Pharmacology. Toxins, 2018, 10, 15.	3.4	27
45	Tetrodotoxin-sensitive voltage-gated sodium channels regulate bladder afferent responses to distension. Pain, 2018, 159, 2573-2584.	4.2	31
46	NKA enhances bladder-afferent mechanosensitivity via urothelial and detrusor activation. American Journal of Physiology - Renal Physiology, 2018, 315, F1174-F1185.	2.7	23
47	Structure–Activity Studies Reveal the Molecular Basis for GABA _B -Receptor Mediated Inhibition of High Voltage-Activated Calcium Channels by α-Conotoxin Vc1.1. ACS Chemical Biology, 2018, 13, 1577-1587.	3.4	28
48	Extrinsic Sensory Afferent Nerves Innervating the Gastrointestinal Tract in Health and Disease. , 2018, , 387-418.		14
49	Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7438-E7447.	7.1	128
50	ldentifying unique subtypes of spinal afferent nerve endings within the urinary bladder of mice. Journal of Comparative Neurology, 2018, 526, 707-720.	1.6	42
51	NaV1.1 inhibition can reduce visceral hypersensitivity. JCI Insight, 2018, 3, .	5.0	34
52	Chronic linaclotide treatment reduces colitis-induced neuroplasticity and reverses persistent bladder dysfunction. JCI Insight, 2018, 3, .	5.0	61
53	α-Conotoxin Vc1.1 inhibits human dorsal root ganglion neuroexcitability and mouse colonic nociception via GABA _B receptors. Gut, 2017, 66, 1083-1094.	12.1	77
54	Apelin targets gut contraction to control glucose metabolism via the brain. Gut, 2017, 66, 258-269.	12.1	73

#	Article	IF	CITATIONS
55	Multiple sodium channel isoforms mediate the pathological effects of Pacific ciguatoxin-1. Scientific Reports, 2017, 7, 42810.	3.3	67
56	Synthesis of Multivalent [Lys8]-Oxytocin Dendrimers that Inhibit Visceral Nociceptive Responses. Australian Journal of Chemistry, 2017, 70, 162.	0.9	9
57	Enterochromaffin Cells Are Gut Chemosensors that Couple to Sensory Neural Pathways. Cell, 2017, 170, 185-198.e16.	28.9	568
58	C-CSF Receptor Blockade Ameliorates Arthritic Pain and Disease. Journal of Immunology, 2017, 198, 3565-3575.	0.8	28
59	Acute colitis chronically alters immune infiltration mechanisms and sensory neuro-immune interactions. Brain, Behavior, and Immunity, 2017, 60, 319-332.	4.1	17
60	Altered Ion Channel/Receptor Expression and Function in Extrinsic Sensory Neurons: The Cause of and Solution to Chronic Visceral Pain?. Advances in Experimental Medicine and Biology, 2016, 891, 75-90.	1.6	9
61	Structure–Activity Studies of Cysteineâ€Rich αâ€Conotoxins that Inhibit Highâ€Voltageâ€Activated Calcium Channels via GABA _B Receptor Activation Reveal a Minimal Functional Motif. Angewandte Chemie - International Edition, 2016, 55, 4692-4696.	13.8	54
62	561 Chronic Oral Administration of the Guanylate Cyclase-C Agonist Linaclotide Attenuates Colitis Induced Bladder Afferent Hyperactivity. Gastroenterology, 2016, 150, S118-S119.	1.3	3
63	Activation of coloâ€rectal highâ€threshold afferent nerves by Interleukinâ€2 is tetrodotoxinâ€sensitive and upregulated in a mouse model of chronic visceral hypersensitivity. Neurogastroenterology and Motility, 2016, 28, 54-63.	3.0	14
64	Structure–Activity Studies of Cysteineâ€Rich αâ€Conotoxins that Inhibit Highâ€Voltageâ€Activated Calcium Channels via GABA _B Receptor Activation Reveal a Minimal Functional Motif. Angewandte Chemie, 2016, 128, 4770-4774.	2.0	2
65	Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature, 2016, 534, 494-499.	27.8	239
66	Conopeptide-Derived κ-Opioid Agonists (Conorphins): Potent, Selective, and Metabolic Stable Dynorphin A Mimetics with Antinociceptive Properties. Journal of Medicinal Chemistry, 2016, 59, 2381-2395.	6.4	28
67	Deletion of Interleukin-6 Signal Transducer gp130 in Small Sensory Neurons Attenuates Mechanonociception and Down-Regulates TRPA1 Expression. Journal of Neuroscience, 2014, 34, 9845-9856.	3.6	66
68	Selenoether oxytocin analogues have analgesic properties in a mouse model of chronic abdominal pain. Nature Communications, 2014, 5, 3165.	12.8	122
69	Neuroplasticity and dysfunction after gastrointestinal inflammation. Nature Reviews Gastroenterology and Hepatology, 2014, 11, 611-627.	17.8	227
70	Immune derived opioidergic inhibition of viscerosensory afferents is decreased in Irritable Bowel Syndrome patients. Brain, Behavior, and Immunity, 2014, 42, 191-203.	4.1	44
71	Increased κ-opioid receptor expression and function during chronic visceral hypersensitivity. Gut, 2014, 63, 1199-1200.	12.1	40
72	Emerging receptor target in the pharmacotherapy of irritable bowel syndrome with constipation. Expert Review of Gastroenterology and Hepatology, 2013, 7, 15-19.	3.0	17

#	Article	IF	CITATIONS
73	Identifying spinal sensory pathways activated by noxious esophageal acid. Neurogastroenterology and Motility, 2013, 25, e660-8.	3.0	16
74	Sensory neuro-immune interactions differ between Irritable Bowel Syndrome subtypes. Gut, 2013, 62, 1456-1465.	12.1	172
75	Linaclotide Inhibits Colonic Nociceptors and Relieves Abdominal Pain via Guanylate Cyclase-C and Extracellular Cyclic Guanosine 3′,5′-Monophosphate. Gastroenterology, 2013, 145, 1334-1346.e11.	1.3	231
76	Gastric vagal afferent modulation by leptin is influenced by food intake status. Journal of Physiology, 2013, 591, 1921-1934.	2.9	78
77	TRP Channels in Visceral Pain. Open Pain Journal, 2013, 6, 23-30.	0.4	3
78	Guanylate cyclase-C receptor activation: unexpected biology. Current Opinion in Pharmacology, 2012, 12, 632-640.	3.5	67
79	5â€HT ₃ and 5â€HT ₄ receptors contribute to the antiâ€motility effects of <i>Garcinia buchananii</i> bark extract in the guineaâ€pig distal colon. Neurogastroenterology and Motility, 2012, 24, e27-40.	3.0	16
80	Mo1849 Mechanism of Action for Linaclotide Induced Abdominal Pain Relief. Gastroenterology, 2012, 142, S-699.	1.3	10
81	Garcinia buchananii bark extract is an effective anti-diarrheal remedy for lactose-induced diarrhea. Journal of Ethnopharmacology, 2012, 142, 539-547.	4.1	21
82	Innervation of the Gastrointestinal Tract by Spinal and Vagal Afferent Nerves. , 2012, , 703-731.		19
83	Sprouting of colonic afferent central terminals and increased spinal mitogenâ€activated protein kinase expression in a mouse model of chronic visceral hypersensitivity. Journal of Comparative Neurology, 2012, 520, 2241-2255.	1.6	62
84	The Hot Mustard Receptor's Role in Gut Motor Function. Gastroenterology, 2011, 141, 423-427.	1.3	10
85	A Novel Role of Cyclic GMP in Colonic Sensory Neurotransmission in Healthy and TNBS-Treated Mice. Gastroenterology, 2011, 140, S-538.	1.3	20
86	Garcinia Buchananii Bark Extract Inhibits Nociceptors, With Greater Efficacy During Inflammation. Gastroenterology, 2011, 140, S-866.	1.3	8
87	Use of natural products in gastrointestinal therapies. Current Opinion in Pharmacology, 2011, 11, 604-611.	3.5	41
88	TRPA1 contributes to specific mechanically activated currents and sensory neuron mechanical hypersensitivity. Journal of Physiology, 2011, 589, 3575-3593.	2.9	116
89	A novel role for TRPM8 in visceral afferent function. Pain, 2011, 152, 1459-1468.	4.2	124
90	Small Bowel Homing T Cells Are Associated With Symptoms and Delayed Gastric Emptying in Functional Dyspepsia. American Journal of Gastroenterology, 2011, 106, 1089-1098.	0.4	149

#	Article	IF	CITATIONS
91	All ahead stop! How intestinal motility adapts to cope with inflammation induced ulceration. Journal of Physiology, 2010, 588, 753-754.	2.9	0
92	Visualising vagal afferent neurons and their terminals whilst silencing TRPV1. Journal of Physiology, 2010, 588, 4069-4070.	2.9	1
93	Identifying the Ion Channels Responsible for Signaling Gastro-Intestinal Based Pain. Pharmaceuticals, 2010, 3, 2768-2798.	3.8	14
94	TRP channels: new targets for visceral pain. Gut, 2010, 59, 126-135.	12.1	69
95	Molecular basis of mechanosensitivity. Autonomic Neuroscience: Basic and Clinical, 2010, 153, 58-68.	2.8	47
96	HIGHLIGHTS IN BASIC AUTONOMIC NEUROSCIENCES. Autonomic Neuroscience: Basic and Clinical, 2010, 152, 1-3.	2.8	0
97	Expression of taste molecules in the upper gastrointestinal tract in humans with and without type 2 diabetes. Gut, 2009, 58, 337-346.	12.1	156
98	Post-inflammatory colonic afferent sensitisation: different subtypes, different pathways and different time courses. Gut, 2009, 58, 1333-1341.	12.1	154
99	TRPV1-expressing sensory fibres and IBS: links with immune function. Gut, 2009, 58, 465-466.	12.1	37
100	Postâ€inflammatory modification of colonic afferent mechanosensitivity. Clinical and Experimental Pharmacology and Physiology, 2009, 36, 1034-1040.	1.9	56
101	The Ion Channel TRPA1 Is Required for Normal Mechanosensation and Is Modulated by Algesic Stimuli. Gastroenterology, 2009, 137, 2084-2095.e3.	1.3	232
102	Selective Role for TRPV4 Ion Channels in Visceral Sensory Pathways. Gastroenterology, 2008, 134, 2059-2069.	1.3	228
103	Involvement of metabotropic glutamate 5 receptor in visceral pain. Pain, 2008, 137, 295-305.	4.2	54
104	Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. American Journal of Physiology - Renal Physiology, 2008, 294, G1288-G1298.	3.4	127
105	Ghrelin selectively reduces mechanosensitivity of upper gastrointestinal vagal afferents. American Journal of Physiology - Renal Physiology, 2007, 292, G1376-G1384.	3.4	91
106	Acid sensing ion channels 2 and 3 are required for inhibition of visceral nociceptors by benzamil. Pain, 2007, 133, 150-160.	4.2	56
107	Localization and comparative analysis of acid-sensing ion channel (ASIC1, 2, and 3) mRNA expression in mouse colonic sensory neurons within thoracolumbar dorsal root ganglia. Journal of Comparative Neurology, 2007, 500, 863-875.	1.6	83
108	Involvement of galanin receptors 1 and 2 in the modulation of mouse vagal afferent mechanosensitivity. Journal of Physiology, 2007, 583, 675-684.	2.9	21

#	Article	IF	CITATIONS
109	Potentiation of mouse vagal afferent mechanosensitivity by ionotropic and metabotropic glutamate receptors. Journal of Physiology, 2006, 577, 295-306.	2.9	45
110	Activation of splanchnic and pelvic colonic afferents by bradykinin in mice. Neurogastroenterology and Motility, 2005, 17, 854-862.	3.0	72
111	Differential chemosensory function and receptor expression of splanchnic and pelvic colonic afferents in mice. Journal of Physiology, 2005, 567, 267-281.	2.9	135
112	Different contributions of ASIC channels 1a, 2, and 3 in gastrointestinal mechanosensory function. Gut, 2005, 54, 1408-1415.	12.1	246
113	Splanchnic and pelvic mechanosensory afferents signal different qualities of colonic stimuli in mice. Gastroenterology, 2004, 127, 166-178.	1.3	275
114	The ion channel ASIC1 contributes to visceral but not cutaneous mechanoreceptor function. Gastroenterology, 2004, 127, 1739-1747.	1.3	138
115	Neural mechanisms underlying migrating motor complex formation in mouse isolated colon. British Journal of Pharmacology, 2001, 132, 507-517.	5.4	63