Bo-Long Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3605274/publications.pdf

Version: 2024-02-01

270 papers

19,667 citations

72 h-index

10389

14208

279 all docs

279 docs citations

times ranked

279

15875 citing authors

g-index

#	Article	IF	CITATIONS
1	Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction. Nano Research, 2022, 15, 310-316.	10.4	65
2	Chiral self-assembly of terminal alkyne and selenium clusters organic-inorganic hybrid. Nano Research, 2022, 15, 2741-2745.	10.4	3
3	Engineering the synergistic effect of carbon dotsâ€stabilized atomic and subnanometric ruthenium as highly efficient electrocatalysts for robust hydrogen evolution. SmartMat, 2022, 3, 249-259.	10.7	38
4	Graphdiyneâ€Induced Iron Vacancy for Efficient Nitrogen Conversion. Advanced Science, 2022, 9, e2102721.	11.2	28
5	New mode of stress sensing in multicolor (Ca1-Sr)8Mg3Al2Si7O28:Eu2+ solid-solution compounds. Nano Energy, 2022, 93, 106799.	16.0	14
6	Surface Molecular Functionalization of Unusual Phase Metal Nanomaterials for Highly Efficient Electrochemical Carbon Dioxide Reduction under Industryâ€Relevant Current Density. Small, 2022, 18, e2106766.	10.0	30
7	Mesoporosityâ€Enabled Selectivity of Mesoporous Palladiumâ€Based Nanocrystals Catalysts in Semihydrogenation of Alkynes. Angewandte Chemie, 2022, 134, .	2.0	6
8	Mesoporosityâ€Enabled Selectivity of Mesoporous Palladiumâ€Based Nanocrystals Catalysts in Semihydrogenation of Alkynes. Angewandte Chemie - International Edition, 2022, 61, e202114539.	13.8	33
9	All-inorganic perovskite nanocrystals: next-generation scintillation materials for high-resolution X-ray imaging. Nanoscale Advances, 2022, 4, 680-696.	4.6	43
10	Few-Layer WS ₂ –WSe ₂ Lateral Heterostructures: Influence of the Gas Precursor Selenium/Tungsten Ratio on the Number of Layers. ACS Nano, 2022, 16, 1198-1207.	14.6	16
11	Electronic engineering of amorphous Fe–Co–S sites in hetero-nanoframes for oxygen evolution and flexible Al–air batteries. Journal of Materials Chemistry A, 2022, 10, 19757-19768.	10.3	11
12	Hexagonal PtBi Intermetallic Inlaid with Subâ€Monolayer Pb Oxyhydroxide Boosts Methanol Oxidation. Small, 2022, 18, e2107803.	10.0	24
13	Interface synergistic effects induced multi-mode luminescence. Nano Research, 2022, 15, 4457-4465.	10.4	21
14	Entanglement of Spatial and Energy Segmentation for C $<$ sub $>$ 1 $<$ /sub $>$ Pathways in CO $<$ sub $>$ 2 $<$ /sub $>$ Reduction on Carbon Skeleton Supported Atomic Catalysts. Advanced Energy Materials, 2022, 12, .	19.5	27
15	Atomic substitution effects of inorganic perovskites for optoelectronic properties modulations. EcoMat, 2022, 4, .	11.9	6
16	A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries. Nano Research, 2022, 15, 5153-5160.	10.4	26
17	Application of machine learning for advanced material prediction and design. EcoMat, 2022, 4, .	11.9	27
18	Ultrastable bimetallic Fe2Mo for efficient oxygen reduction reaction in pH-universal applications. Nano Research, 2022, 15, 4950-4957.	10.4	8

#	Article	IF	Citations
19	Non-noble metal-based bifunctional electrocatalysts for hydrogen production. Rare Metals, 2022, 41, 2169-2183.	7.1	62
20	A top-down strategy for amorphization of hydroxyl compounds for electrocatalytic oxygen evolution. Nature Communications, 2022, 13, 1187.	12.8	63
21	Manipulating Crystallization Kinetics in Highâ€Performance Bladeâ€Coated Perovskite Solar Cells via Cosolventâ€Assisted Phase Transition. Advanced Materials, 2022, 34, e2200276.	21.0	64
22	Atomically precise bimetallic metal ensembles with tailorable synergistic effects. Cell Reports Physical Science, 2022, , 100850.	5.6	5
23	Confined Growth of Silver–Copper Janus Nanostructures with {100} Facets for Highly Selective Tandem Electrocatalytic Carbon Dioxide Reduction. Advanced Materials, 2022, 34, e2110607.	21.0	82
24	Highly Loaded Independent Pt ⁰ Atoms on Graphdiyne for pHâ€General Methanol Oxidation Reaction. Advanced Science, 2022, 9, e2104991.	11.2	26
25	Broadband multimodal emission in Sb-doped CaZnOS-layered semiconductors. Science China Materials, 2022, 65, 1329-1336.	6.3	8
26	Carboxylated carbon nanotubes with high electrocatalytic activity for oxygen evolution in acidic conditions. Informa \ddot{A} n \ddot{A} -Materi \ddot{A} ily, 2022, 4, .	17.3	21
27	Entanglement of Spatial and Energy Segmentation for C ₁ Pathways in CO ₂ Reduction on Carbon Skeleton Supported Atomic Catalysts (Adv. Energy Mater. 14/2022). Advanced Energy Materials, 2022, 12, .	19.5	0
28	The self-complementary effect through strong orbital coupling in ultrathin high-entropy alloy nanowires boosting pH-universal multifunctional electrocatalysis. Applied Catalysis B: Environmental, 2022, 312, 121431.	20.2	40
29	New framework of integrated electrocatalysis systems for nitrogen fixation. Journal of Materials Chemistry A, 2022, 10, 19506-19517.	10.3	3
30	Tailoring Oxygen Reduction Reaction Pathway on Spinel Oxides via Surficial Geometricalâ€Site Occupation Modification Driven by the Oxygen Evolution Reaction. Advanced Materials, 2022, 34, e2202874.	21.0	52
31	Flexible modulations on selectivity of syngas formation via CO2 reduction on atomic catalysts. Nano Energy, 2022, 99, 107382.	16.0	6
32	Rareâ€Earthâ€Based Perovskite Cs ₂ AgScCl ₆ :Bi for Strong Full Visible Spectrum Emission. Advanced Functional Materials, 2022, 32, .	14.9	32
33	Neighboring effects of active sites for CO2 transition to C1 products on atomic catalysts. Nano Energy, 2022, 99, 107398.	16.0	5
34	Controlling the Cation Exsolution of Perovskite to Customize Heterostructure Active Site for Oxygen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2022, 14, 25638-25647.	8.0	26
35	Boosting the Electrocatalytic Oxygen Evolution of Perovskite LaCo _{1â^'} <i>_x</i> Fe <i>_x</i> O ₃ by the Construction of Yolkâ€6hell Nanostructures and Electronic Modulation. Small, 2022, 18, .	10.0	31
36	Solarâ€Driven Overproduction of Biofuels in Microorganisms. Angewandte Chemie - International Edition, 2022, 61, .	13.8	5

#	Article	IF	Citations
37	A General Synthetic Method for High-Entropy Alloy Subnanometer Ribbons. Journal of the American Chemical Society, 2022, 144, 10582-10590.	13.7	108
38	The interfacial effect induced by rare earth oxide in boosting the conversion of CO ₂ to formate. Energy and Environmental Science, 2022, 15, 3494-3502.	30.8	25
39	Exposed facet-controlled N2 electroreduction on distinct Pt3Fe nanostructures of nanocubes, nanorods and nanowires. National Science Review, 2021, 8, nwaa088.	9.5	39
40	High energy X-ray radiation sensitive scintillating materials for medical imaging, cancer diagnosis and therapy. Nano Energy, 2021, 79, 105437.	16.0	95
41	WO <i>_x</i> â€Surface Decorated PtNi@Pt Dendritic Nanowires as Efficient pHâ€Universal Hydrogen Evolution Electrocatalysts. Advanced Energy Materials, 2021, 11, 2003192.	19.5	82
42	Multiâ€Site Electrocatalysts Boost pHâ€Universal Nitrogen Reduction by Highâ€Entropy Alloys. Advanced Functional Materials, 2021, 31, 2006939.	14.9	99
43	Alloyed Palladium–Silver Nanowires Enabling Ultrastable Carbon Dioxide Reduction to Formate. Advanced Materials, 2021, 33, e2005821.	21.0	73
44	Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor. Nano Energy, 2021, 81, 105606.	16.0	204
45	The facile oil-phase synthesis of a multi-site synergistic high-entropy alloy to promote the alkaline hydrogen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 889-893.	10.3	80
46	Twoâ€Dimensional Metal–Organic Frameworksâ€Based Electrocatalysts for Oxygen Evolution and Oxygen Reduction Reactions. Advanced Energy and Sustainability Research, 2021, 2, 2000067.	5.8	29
47	Exploiting Ruâ€Induced Lattice Strain in CoRu Nanoalloys for Robust Bifunctional Hydrogen Production. Angewandte Chemie, 2021, 133, 3327-3335.	2.0	189
48	Exploiting Ruâ€Induced Lattice Strain in CoRu Nanoalloys for Robust Bifunctional Hydrogen Production. Angewandte Chemie - International Edition, 2021, 60, 3290-3298.	13.8	254
49	Multimodal channel cancer chemotherapy by 2D functional gadolinium metal–organic framework. National Science Review, 2021, 8, nwaa221.	9.5	31
50	Graphdiyne-based metal atomic catalysts for synthesizing ammonia. National Science Review, 2021, 8, nwaa213.	9.5	110
51	Palladium–Silver Nanowires: Alloyed Palladium–Silver Nanowires Enabling Ultrastable Carbon Dioxide Reduction to Formate (Adv. Mater. 4/2021). Advanced Materials, 2021, 33, 2170027.	21.0	1
52	Lanthanide electronic perturbation in Pt–Ln (La, Ce, Pr and Nd) alloys for enhanced methanol oxidation reaction activity. Energy and Environmental Science, 2021, 14, 5911-5918.	30.8	65
53	Native point defect modulated Cr ³⁺ –LaAlO ₃ as an <i>in vitro</i> excited contrast medium for <i>in vivo</i> near-infrared persistent deep-tissue bio-imaging. Chemical Communications, 2021, 57, 9366-9369.	4.1	9
54	Non-equilibrium insertion of lithium ions into graphite. Journal of Materials Chemistry A, 2021, 9, 12080-12086.	10.3	15

#	Article	IF	CITATIONS
55	Grain-Boundary-Engineered La ₂ CuO ₄ Perovskite Nanobamboos for Efficient CO ₂ Reduction Reaction. Nano Letters, 2021, 21, 980-987.	9.1	68
56	High-performance diluted nickel nanoclusters decorating ruthenium nanowires for pH-universal overall water splitting. Energy and Environmental Science, 2021, 14, 3194-3202.	30.8	53
57	Graphdiyne Ultrathin Nanosheets for Efficient Water Splitting. Advanced Functional Materials, 2021, 31, 2010112.	14.9	35
58	Revisiting an ancient inorganic aggregationâ€induced emission system: An enlightenment to clusteroluminescence. Aggregate, 2021, 2, e36.	9.9	40
59	A highly efficient atomically thin curved PdIr bimetallene electrocatalyst. National Science Review, 2021, 8, nwab019.	9.5	59
60	High-resolution X-ray luminescence extension imaging. Nature, 2021, 590, 410-415.	27.8	378
61	Selfâ€Validated Machine Learning Study of Graphdiyneâ€Based Dual Atomic Catalyst. Advanced Energy Materials, 2021, 11, 2003796.	19.5	57
62	TM LDH Meets Birnessite: A 2Dâ€2D Hybrid Catalyst with Longâ€Term Stability for Water Oxidation at Industrial Operating Conditions. Angewandte Chemie - International Edition, 2021, 60, 9699-9705.	13.8	57
63	Understanding contact electrification at liquid–solid interfaces from surface electronic structure. Nature Communications, 2021, 12, 1752.	12.8	56
64	Selfâ∈Recoverable Mechanically Induced Instant Luminescence from Cr ³⁺ â∈Doped LiGa ₅ O ₈ . Advanced Functional Materials, 2021, 31, 2010685.	14.9	84
65	Electronic View of Triboelectric Nanogenerator for Energy Harvesting: Mechanisms and Applications. Advanced Energy and Sustainability Research, 2021, 2, 2000087.	5.8	4
66	Discovering and Dissecting Mechanically Excited Luminescence of Mn ²⁺ Activators via Matrix Microstructure Evolution. Advanced Functional Materials, 2021, 31, 2100221.	14.9	24
67	TM LDH Meets Birnessite: A 2Dâ€2D Hybrid Catalyst with Longâ€Term Stability for Water Oxidation at Industrial Operating Conditions. Angewandte Chemie, 2021, 133, 9785-9791.	2.0	3
68	Metallated Graphynes as a New Class of Photofunctional 2D Organometallic Nanosheets. Angewandte Chemie, 2021, 133, 11427-11435.	2.0	3
69	Direct Observation of Heterogeneous Surface Reactivity and Reconstruction on Terminations of Grain Boundaries of Platinum., 2021, 3, 622-629.		14
70	Au Clusters on Pd Nanosheets Selectively Switch the Pathway of Ethanol Electrooxidation: Amorphous/Crystalline Interface Matters. Advanced Energy Materials, 2021, 11, 2100187.	19.5	113
71	Metallated Graphynes as a New Class of Photofunctional 2D Organometallic Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 11326-11334.	13.8	34
72	Atomic Sulfur Filling Oxygen Vacancies Optimizes H Absorption and Boosts the Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie, 2021, 133, 14236-14242.	2.0	27

#	Article	IF	Citations
73	Atomic Sulfur Filling Oxygen Vacancies Optimizes H Absorption and Boosts the Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie - International Edition, 2021, 60, 14117-14123.	13.8	129
74	A chemical etching strategy to improve and stabilize RuO2-based nanoassemblies for acidic oxygen evolution. Nano Energy, 2021, 84, 105909.	16.0	58
75	Stepping Out of Transition Metals: Activating the Dual Atomic Catalyst through Main Group Elements. Advanced Energy Materials, 2021, 11, 2101404.	19.5	33
76	Single-Crystal Inorganic Helical Architectures Induced by Asymmetrical Defects in Sub-Nanometric Wires. Journal of the American Chemical Society, 2021, 143, 9858-9865.	13.7	26
77	Decoding of crystal synthesis of fcc-hcp reversible transition for metals: theoretical mechanistic study from facet control to phase transition engineering. Nano Energy, 2021, 85, 106026.	16.0	7
78	Oxygenâ€Incorporated NiMoP Nanotube Arrays as Efficient Bifunctional Electrocatalysts For Ureaâ€Assisted Energyâ€Saving Hydrogen Production in Alkaline Electrolyte. Advanced Functional Materials, 2021, 31, 2104951.	14.9	247
79	Unraveling the anomalous mechanoluminescence intensity change and pressure-induced red-shift for manganese-doped zinc sulfide. Nano Energy, 2021, 85, 106005.	16.0	19
80	Atomic Imaging of Electrically Switchable Striped Domains in ⟨i⟩β⟨ i⟩′â€ n⟨sub⟩2⟨ sub⟩Se⟨sub⟩3⟨ sub⟩. Advanced Science, 2021, 8, e2100713.	11.2	22
81	Segmented Au/PtCo heterojunction nanowires for efficient formic acid oxidation catalysis. Fundamental Research, 2021, 1, 453-460.	3.3	8
82	Supramolecular Anchoring Strategy for Facile Production of Ruthenium Nanoparticles Embedded in N-Doped Mesoporous Carbon Nanospheres for Efficient Hydrogen Generation. ACS Applied Materials & Amp; Interfaces, 2021, 13, 32997-33005.	8.0	11
83	Dilute Aqueousâ€Aprotic Hybrid Electrolyte Enabling a Wide Electrochemical Window through Solvation Structure Engineering. Advanced Materials, 2021, 33, e2102390.	21.0	28
84	Phaseâ€Dependent Electrocatalytic CO 2 Reduction on Pd 3 Bi Nanocrystals. Angewandte Chemie, 2021, 133, 21909-21913.	2.0	11
85	Phaseâ€Dependent Electrocatalytic CO ₂ Reduction on Pd ₃ Bi Nanocrystals. Angewandte Chemie - International Edition, 2021, 60, 21741-21745.	13.8	59
86	Electronic modification in graphdiyne for future electrocatalytic applications. 2D Materials, 2021, 8, 044009.	4.4	6
87	Atomicâ€Strain Mapping of Highâ€Index Facets in Lateâ€Transitionâ€Metal Nanoparticles for Electrocatalysis. Angewandte Chemie - International Edition, 2021, 60, 22996-23001.	13.8	16
88	Atomicâ€Strain Mapping of Highâ€Index Facets in Lateâ€Transitionâ€Metal Nanoparticles for Electrocatalysis. Angewandte Chemie, 2021, 133, 23178.	2.0	0
89	A New Hexagonal Cobalt Nanosheet Catalyst for Selective CO ₂ Conversion to Ethanal. Journal of the American Chemical Society, 2021, 143, 15335-15343.	13.7	64
90	Highly Controllable Hierarchically Porous Ag/Ag ₂ S Heterostructure by Cation Exchange for Efficient Hydrogen Evolution. Small, 2021, 17, e2103064.	10.0	25

#	Article	IF	Citations
91	Uncovering the Promotion of CeO ₂ /CoS _{1.97} Heterostructure with Specific Spatial Architectures on Oxygen Evolution Reaction. Advanced Materials, 2021, 33, e2102593.	21.0	118
92	A newly-explored Pd-based nanocrystal for the pH-universal electrosynthesis of H2O2. Nano Energy, 2021, 89, 106480.	16.0	25
93	A Review on Ceo ₂ â€Based Electrocatalyst and Photocatalyst in Energy Conversion. Advanced Energy and Sustainability Research, 2021, 2, 2000063.	5.8	60
94	A highly active CH ₄ catalyst correlated with solid oxide fuel cell anode performance. Journal of Materials Chemistry A, 2021, 9, 5067-5074.	10.3	15
95	Graphdiyne based catalysts for energy applications. Materials Chemistry Frontiers, 2021, 5, 7369-7383.	5.9	15
96	Gramâ€Scale Synthesis of Nanosized Li ₃ HoBr ₆ Solid Electrolyte for Allâ€Solidâ€State Liâ€Se Battery. Small Methods, 2021, 5, e2101002.	8.6	22
97	Compensating Electronic Effect Enables Fast Siteâ€toâ€Site Electron Transfer over Ultrathin RuMn Nanosheet Branches toward Highly Electroactive and Stable Water Splitting. Advanced Materials, 2021, 33, e2105308.	21.0	73
98	Fast Li-ion Conductor of Li ₃ HoBr ₆ for Stable All-Solid-State Lithium–Sulfur Battery. Nano Letters, 2021, 21, 9325-9331.	9.1	41
99	Effective Repeatable Mechanoluminescence in Heterostructured Li _{1â^'} <i>_x</i> NbO ₃ : Pr ³⁺ . Small, 2021, 17, e2103441.	10.0	26
100	Synergistic Effect of Graphdiyne-based Electrocatalysts. Chemical Research in Chinese Universities, 2021, 37, 1242-1256.	2.6	7
101	Subnanometer high-entropy alloy nanowires enable remarkable hydrogen oxidation catalysis. Nature Communications, 2021, 12, 6261.	12.8	169
102	Tunable CO/H ₂ ratios of electrochemical reduction of CO ₂ through the Zn-Ln dual atomic catalysts. Science Advances, 2021, 7, eabl4915.	10.3	82
103	Unexpected high selectivity for acetate formation from CO ₂ reduction with copper based 2D hybrid catalysts at ultralow potentials. Chemical Science, 2021, 12, 15382-15388.	7.4	19
104	Controlled synthesis of Bi- and tri-nuclear Cu-oxo nanoclusters on metal–organic frameworks and the structure–reactivity correlations. Chemical Science, 2021, 13, 50-58.	7.4	5
105	Atomically Dispersed Cu Catalyst for Efficient Chemoselective Hydrogenation Reaction. Nano Letters, 2021, 21, 10284-10291.	9.1	85
106	Differential Adsorption ofl―andd‣ysine on Achiral MFI Zeolites as Determined by Synchrotron Xâ€Ray Powder Diffraction and Thermogravimetric Analysis. Angewandte Chemie, 2020, 132, 1109-1113.	2.0	6
107	The Spacer Cations Interplay for Efficient and Stable Layered 2D Perovskite Solar Cells. Advanced Energy Materials, 2020, 10, 1901566.	19.5	89
108	Differential Adsorption of <scp>l</scp> ‷and <scp>d</scp> ‣ysine on Achiral MFI Zeolites as Determined by Synchrotron Xâ€Ray Powder Diffraction and Thermogravimetric Analysis. Angewandte Chemie - International Edition, 2020, 59, 1093-1097.	13.8	12

#	Article	IF	CITATIONS
109	Efficient Optimization of Electron/Oxygen Pathway by Constructing Ceria/Hydroxide Interface for Highly Active Oxygen Evolution Reaction. Advanced Functional Materials, 2020, 30, 1908367.	14.9	120
110	Surface oxygen-mediated ultrathin PtRuM (Ni, Fe, and Co) nanowires boosting methanol oxidation reaction. Journal of Materials Chemistry A, 2020, 8, 2323-2330.	10.3	67
111	On-Demand, Ultraselective Hydrogenation System Enabled by Precisely Modulated Pd–Cd Nanocubes. Journal of the American Chemical Society, 2020, 142, 962-972.	13.7	53
112	Kineticâ€Oriented Construction of MoS ₂ Synergistic Interface to Boost pHâ€Universal Hydrogen Evolution. Advanced Functional Materials, 2020, 30, 1908520.	14.9	59
113	Crystalâ€Phaseâ€Engineered PdCu Electrocatalyst for Enhanced Ammonia Synthesis. Angewandte Chemie, 2020, 132, 2671-2675.	2.0	93
114	Crystalâ€Phaseâ€Engineered PdCu Electrocatalyst for Enhanced Ammonia Synthesis. Angewandte Chemie - International Edition, 2020, 59, 2649-2653.	13.8	131
115	Hydrogen Evolution Electrocatalysis: Interface Modulation of MoS ₂ /Metal Oxide Heterostructures for Efficient Hydrogen Evolution Electrocatalysis (Small 28/2020). Small, 2020, 16, 2070158.	10.0	2
116	Self-Elimination of Intrinsic Defects Improves the Low-Temperature Performance of Perovskite Photovoltaics. Joule, 2020, 4, 1961-1976.	24.0	152
117	Highly efficient catalysts for oxygen reduction using well-dispersed iron carbide nanoparticles embedded in multichannel hollow nanofibers. Journal of Materials Chemistry A, 2020, 8, 18125-18131.	10.3	23
118	Fabrication of layered double hydroxide microcapsules mediated by cerium doping in metal–organic frameworks for boosting water splitting. Energy and Environmental Science, 2020, 13, 2949-2956.	30.8	126
119	Loading Copper Atoms on Graphdiyne for Highly Efficient Hydrogen Production. ChemPhysChem, 2020, 21, 2145-2149.	2.1	40
120	Atomically deviated Pd-Te nanoplates boost methanol-tolerant fuel cells. Science Advances, 2020, 6, eaba9731.	10.3	78
121	Fast site-to-site electron transfer of high-entropy alloy nanocatalyst driving redox electrocatalysis. Nature Communications, 2020, 11, 5437.	12.8	288
122	Iridium Single Atoms Coupling with Oxygen Vacancies Boosts Oxygen Evolution Reaction in Acid Media. Journal of the American Chemical Society, 2020, 142, 18378-18386.	13.7	334
123	NiCo ₂ O ₄ â€Based Nanosheets with Uniform 4 nm Mesopores for Excellent Zn–Air Battery Performance. Advanced Materials, 2020, 32, e2001651.	21.0	120
124	Multimodal Luminescent Yb ³⁺ /Er ³⁺ /Bi ³⁺ â€Doped Perovskite Single Crystals for Xâ€ray Detection and Antiâ€Counterfeiting. Advanced Materials, 2020, 32, e2004506.	21.0	187
125	Selective Surface Reconstruction of a Defective Iridiumâ€Based Catalyst for Highâ€Efficiency Water Splitting. Advanced Functional Materials, 2020, 30, 2004375.	14.9	85
126	Probing the Irregular Lattice Strainâ€Induced Electronic Structure Variations on Late Transition Metals for Boosting the Electrocatalyst Activity. Small, 2020, 16, e2002434.	10.0	15

#	Article	IF	CITATIONS
127	Boosted Oxygen Evolution Reactivity via Atomic Iron Doping in Cobalt Carbonate Hydroxide Hydrate. ACS Applied Materials & Diterfaces, 2020, 12, 40220-40228.	8.0	42
128	Atomic PdAu Interlayer Sandwiched into Pd/Pt Core/Shell Nanowires Achieves Superstable Oxygen Reduction Catalysis. ACS Nano, 2020, 14, 11570-11578.	14.6	84
129	Electronic Tunability and Mobility Anisotropy of Quasi-2D Perovskite Single Crystals with Varied Spacer Cations. Journal of Physical Chemistry Letters, 2020, 11, 7610-7616.	4.6	35
130	Water Splitting: Highâ€Index Faceted RuCo Nanoscrews for Water Electrosplitting (Adv. Energy Mater.) Tj ETQq	0 0 0 gBT 19.5	/Oyerlock 10
131	Designing the future atomic electrocatalyst for efficient energy systems. Engineering Reports, 2020, 2, e12327.	1.7	5
132	When rare earth meets carbon nanodots: mechanisms, applications and outlook. Chemical Society Reviews, 2020, 49, 9220-9248.	38.1	61
133	Highâ€Index Faceted RuCo Nanoscrews for Water Electrosplitting. Advanced Energy Materials, 2020, 10, 2002860.	19.5	58
134	A Generalized Surface Chalcogenation Strategy for Boosting the Electrochemical N ₂ Fixation of Metal Nanocrystals. Advanced Materials, 2020, 32, e2001267.	21.0	105
135	Graphdiyne Interface Engineering: Highly Active and Selective Ammonia Synthesis. Angewandte Chemie, 2020, 132, 13121-13127.	2.0	15
136	Interface Modulation of MoS ₂ /Metal Oxide Heterostructures for Efficient Hydrogen Evolution Electrocatalysis. Small, 2020, 16, e2002212.	10.0	68
137	Ultrathin RuRh Alloy Nanosheets Enable High-Performance Lithium-CO2 Battery. Matter, 2020, 2, 1494-1508.	10.0	91
138	General synthesis of two-dimensional van der Waals heterostructure arrays. Nature, 2020, 579, 368-374.	27.8	393
139	2D graphdiyne loading ruthenium atoms for high efficiency water splitting. Nano Energy, 2020, 72, 104667.	16.0	91
140	A ZnS/CaZnOS Heterojunction for Efficient Mechanicalâ€toâ€Optical Energy Conversion by Conduction Band Offset. Advanced Materials, 2020, 32, e1907747.	21.0	114
141	Strain modulation of phase transformation of noble metal nanomaterials. InformaÄnÃ-Materiály, 2020, 2, 715-734.	17.3	38
142	High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst. Nature Communications, 2020, 11, 954.	12.8	152
143	Accelerating Atomic Catalyst Discovery by Theoretical Calculationsâ€Machine Learning Strategy. Advanced Energy Materials, 2020, 10, 1903949.	19.5	99
144	Rare-earth-containing perovskite nanomaterials: design, synthesis, properties and applications. Chemical Society Reviews, 2020, 49, 1109-1143.	38.1	211

#	Article	IF	Citations
145	A full picture of intrinsic defects induced self-activation of elastic potential fluctuation within monolayered metal chalcogenide. Nano Energy, 2020, 70, 104530.	16.0	2
146	Anion charge density disturbance induces in-plane instabilities within 2D lateral heterojunction of TMD: An atomic view. Nano Energy, 2020, 70, 104484.	16.0	6
147	A General Method for Transition Metal Single Atoms Anchored on Honeycombâ€Like Nitrogenâ€Doped Carbon Nanosheets. Advanced Materials, 2020, 32, e1906905.	21.0	163
148	Partially hydroxylated ultrathin iridium nanosheets as efficient electrocatalysts for water splitting. National Science Review, 2020, 7, 1340-1348.	9.5	56
149	Graphdiyne Interface Engineering: Highly Active and Selective Ammonia Synthesis. Angewandte Chemie - International Edition, 2020, 59, 13021-13027.	13.8	154
150	Exploring Bi ₂ Te ₃ Nanoplates as Versatile Catalysts for Electrochemical Reduction of Small Molecules. Advanced Materials, 2020, 32, e1906477.	21.0	65
151	A General Strategy to Glassy Mâ€Te (M = Ru, Rh, Ir) Porous Nanorods for Efficient Electrochemical N ₂ Fixation. Advanced Materials, 2020, 32, e1907112.	21.0	111
152	General synthesis of large-area flexible bi-atomic subnano thin lanthanide oxide nanoscrolls. Nano Energy, 2020, 78, 105318.	16.0	2
153	Ultrathin RuRh@(RuRh)O ₂ core@shell nanosheets as stable oxygen evolution electrocatalysts. Journal of Materials Chemistry A, 2020, 8, 15746-15751.	10.3	24
154	Highly Distorted Platinum Nanorods for High-Efficiency Fuel Cell Catalysis. CCS Chemistry, 2020, 2, 401-412.	7.8	16
155	Fluorographdiyne: A Metalâ€Free Catalyst for Applications in Water Reduction and Oxidation. Angewandte Chemie, 2019, 131, 14035-14041.	2.0	34
156	Fluorographdiyne: A Metalâ€Free Catalyst for Applications in Water Reduction and Oxidation. Angewandte Chemie - International Edition, 2019, 58, 13897-13903.	13.8	123
157	Oxygen Vacancies on Layered Niobic Acid that Weaken the Catalytic Conversion of Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie, 2019, 131, 11245.	2.0	0
158	Channelâ€Rich RuCu Nanosheets for pHâ€Universal Overall Water Splitting Electrocatalysis. Angewandte Chemie - International Edition, 2019, 58, 13983-13988.	13.8	274
159	Channelâ€Rich RuCu Nanosheets for pHâ€Universal Overall Water Splitting Electrocatalysis. Angewandte Chemie, 2019, 131, 14121-14126.	2.0	58
160	An interfacial electron transfer relay center for accelerating the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 18304-18310.	10.3	19
161	Revealing Atomic Structure and Oxidation States of Dopants in Charge-Ordered Nanoparticles for Migration-Promoted Oxygen-Exchange Capacity. Chemistry of Materials, 2019, 31, 5769-5777.	6.7	10
162	Atomic Arrangement in Metalâ€Doped NiS ₂ Boosts the Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie - International Edition, 2019, 58, 18676-18682.	13.8	174

#	Article	IF	CITATIONS
163	Platinum Porous Nanosheets with High Surface Distortion and Pt Utilization for Enhanced Oxygen Reduction Catalysis. Advanced Functional Materials, 2019, 29, 1904429.	14.9	96
164	Hydrogen Evolution Reaction: Oneâ€Step Controllable Synthesis of Catalytic Ni ₄ Mo/MoO <i>_x</i> /Cu Nanointerfaces for Highly Efficient Water Reduction (Adv. Energy Mater. 41/2019). Advanced Energy Materials, 2019, 9, 1970162.	19.5	0
165	Locally collective hydrogen bonding isolates lead octahedra for white emission improvement. Nature Communications, 2019, 10, 5190.	12.8	109
166	Oneâ€6tep Controllable Synthesis of Catalytic Ni ₄ Mo/MoO <i>_x</i> /Cu Nanointerfaces for Highly Efficient Water Reduction. Advanced Energy Materials, 2019, 9, 1901454.	19.5	39
167	Atomic Arrangement in Metalâ€Doped NiS ₂ Boosts the Hydrogen Evolution Reaction in Alkaline Media. Angewandte Chemie, 2019, 131, 18849-18855.	2.0	38
168	Ultrathin Nanosheet of Graphdiyne-Supported Palladium Atom Catalyst for Efficient Hydrogen Production. IScience, 2019, 11, 31-41.	4.1	149
169	Trifunctional Fishbone-like PtCo/Ir Enables High-Performance Zinc–Air Batteries to Drive the Water-Splitting Catalysis. Chemistry of Materials, 2019, 31, 8136-8144.	6.7	55
170	Emerging role of machine learning in light-matter interaction. Light: Science and Applications, 2019, 8, 84.	16.6	56
171	Defect Engineering of Palladium–Tin Nanowires Enables Efficient Electrocatalysts for Fuel Cell Reactions. Nano Letters, 2019, 19, 6894-6903.	9.1	79
172	pH-Universal Water Splitting Catalyst: Ru-Ni Nanosheet Assemblies. IScience, 2019, 11, 492-504.	4.1	97
173	Enhancing catalytic H2 generation by surface electronic tuning of systematically controlled Pt-Pb nanocrystals. Nano Research, 2019, 12, 2335-2340.	10.4	3
174	[Rh ^{III} (Cp*)]-catalyzed arylfluorination of \hat{l} ±-diazoketoesters for facile synthesis of \hat{l} ±-aryl- \hat{l} ±-fluoroketoesters. Organic and Biomolecular Chemistry, 2019, 17, 1191-1201.	2.8	9
175	Oxygen Vacancies on Layered Niobic Acid That Weaken the Catalytic Conversion of Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie - International Edition, 2019, 58, 11491-11496.	13.8	104
176	Oxygen Vacancies on Layered Niobic Acid That Weaken the Catalytic Conversion of Polysulfides in Lithium–Sulfur Batteries. Angewandte Chemie, 2019, 131, 11615-11620.	2.0	13
177	An efficient ultrathin PtFeNi Nanowire/Ionic liquid conjugate electrocatalyst. Applied Catalysis B: Environmental, 2019, 256, 117828.	20.2	40
178	Blue energy case study and analysis: Attack of chloride ions on chromia passive film on metallic electrode of nanogenerator. Nano Energy, 2019, 62, 103-110.	16.0	14
179	Highly Efficient and Selective Generation of Ammonia and Hydrogen on a Graphdiyne-Based Catalyst. Journal of the American Chemical Society, 2019, 141, 10677-10683.	13.7	474
180	Highly active electron-affinity for ultra-low barrier for alkaline ORR in Pd3Cu. Materials Today Energy, 2019, 12, 426-430.	4.7	10

#	Article	IF	Citations
181	Mapping of atomic catalyst on graphdiyne. Nano Energy, 2019, 62, 754-763.	16.0	64
182	Expanding the toolbox for lanthanide-doped upconversion nanocrystals. Journal Physics D: Applied Physics, 2019, 52, 383002.	2.8	27
183	Rationally engineered active sites for efficient and durable hydrogen generation. Nature Communications, 2019, 10, 2281.	12.8	59
184	Nanostructured High-Performance Thin-Film Transistors and Phototransistors Fabricated by a High-Yield and Versatile Near-Field Nanolithography Strategy. ACS Nano, 2019, 13, 6618-6630.	14.6	15
185	Interfacial Defect Engineering for Improved Portable Zinc–Air Batteries with a Broad Working Temperature. Angewandte Chemie - International Edition, 2019, 58, 9459-9463.	13.8	139
186	Integrating temporal and spatial control of electronic transitions for bright multiphoton upconversion. Nature Communications, 2019, 10, 1811.	12.8	104
187	Interfacial Defect Engineering for Improved Portable Zinc–Air Batteries with a Broad Working Temperature. Angewandte Chemie, 2019, 131, 9559-9563.	2.0	23
188	Electronic Structures of Alkaline Rare Earth Fluoride-Based Upconversion Nanomaterials. , 2019, , 447-467.		0
189	Impacts of alkaline on the defects property and crystallization kinetics in perovskite solar cells. Nature Communications, $2019,10,1112.$	12.8	185
190	Phonon Evidence of Kohn Anomalies in Nanogenerator ZnO. Nano Energy, 2019, 59, 626-635.	16.0	6
191	:Hydrogen Doping Oxide Transistors: Analysis of Ultrahigh Apparent Mobility in Oxide Fieldâ€Effect Transistors (Adv. Sci. 7/2019). Advanced Science, 2019, 6, 1970040.	11.2	6
192	Mechanoluminescence: Mechanically Excited Multicolor Luminescence in Lanthanide Ions (Adv. Mater.) Tj ETQqC	0 0 rgBT 21.9	/Oyerlock 10
193	Analysis of Ultrahigh Apparent Mobility in Oxide Fieldâ€Effect Transistors. Advanced Science, 2019, 6, 1801189.	11.2	40
194	Ultrathin PtNiM (M = Rh, Os, and Ir) Nanowires as Efficient Fuel Oxidation Electrocatalytic Materials. Advanced Materials, 2019, 31, e1805833.	21.0	223
195	Amorphization activated ruthenium-tellurium nanorods for efficient waterÂsplitting. Nature Communications, 2019, 10, 5692.	12.8	312
196	Advanced Ultrathin RuPdM (M = Ni, Co, Fe) Nanosheets Electrocatalyst Boosts Hydrogen Evolution. ACS Central Science, 2019, 5, 1991-1997.	11.3	78
197	Mechanically Excited Multicolor Luminescence in Lanthanide Ions. Advanced Materials, 2019, 31, e1807062.	21.0	120
198	Piezophotonic effect based on mechanoluminescent materials for advanced flexible optoelectronic applications. Nano Energy, 2019, 55, 389-400.	16.0	126

#	Article	IF	CITATIONS
199	Strongly Coupled Nickel–Cobalt Nitrides/Carbon Hybrid Nanocages with Pt‣ike Activity for Hydrogen Evolution Catalysis. Advanced Materials, 2019, 31, e1805541.	21.0	276
200	A Eu ³⁺ -Eu ²⁺ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science, 2019, 363, 265-270.	12.6	793
201	Anti-poisoned oxygen reduction by the interface modulated Pd@NiO core@shell. Nano Energy, 2019, 58, 234-243.	16.0	38
202	Rh-doped PdAg nanoparticles as efficient methanol tolerance electrocatalytic materials for oxygen reduction. Science Bulletin, 2019, 64, 54-62.	9.0	33
203	Nanophotonic energy storage in upconversion nanoparticles. Nano Energy, 2019, 56, 473-481.	16.0	43
204	Multimetal Borides Nanochains as Efficient Electrocatalysts for Overall Water Splitting. Small, 2019, 15, e1804212.	10.0	135
205	Transition metal-doped nickel phosphide nanoparticles as electro- and photocatalysts for hydrogen generation reactions. Applied Catalysis B: Environmental, 2019, 242, 186-193.	20.2	120
206	Intrinsic energy conversions for photon-generation in piezo-phototronic materials: A case study on alkaline niobates. Nano Energy, 2018, 47, 150-171.	16.0	29
207	Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nature Communications, 2018, 9, 1460.	12.8	781
208	Coupled s-p-d Exchange in Facet-Controlled Pd3Pb Tripods Enhances Oxygen Reduction Catalysis. CheM, 2018, 4, 359-371.	11.7	100
209	Enhanced electron transfer and light absorption on imino polymer capped PdAg nanowire networks for efficient room-temperature dehydrogenation of formic acid. Journal of Materials Chemistry A, 2018, 6, 1979-1984.	10.3	43
210	Barrier-free Interface Electron Transfer on PtFe-Fe2C Janus-like Nanoparticles Boosts Oxygen Catalysis. CheM, 2018, 4, 1153-1166.	11.7	82
211	Precise Patterning of Largeâ€Scale TFT Arrays Based on Solutionâ€Processed Oxide Semiconductors: A Comparative Study of Additive and Subtractive Approaches. Advanced Materials Interfaces, 2018, 5, 1700981.	3.7	21
212	Dynamically self-activated catalyst for direct synthesis of hydrogen peroxide (H2O2). Materials Today Energy, 2018, 10, 307-316.	4.7	7
213	Overall water splitting by graphdiyne-exfoliated and -sandwiched layered double-hydroxide nanosheet arrays. Nature Communications, 2018, 9, 5309.	12.8	287
214	Theory of piezotronics and piezo-phototronics. MRS Bulletin, 2018, 43, 928-935.	3.5	66
215	Co ₃ O ₄ /Fe _{0.33} Co _{0.66} P Interface Nanowire for Enhancing Water Oxidation Catalysis at High Current Density. Advanced Materials, 2018, 30, e1803551.	21.0	150
216	Multicolor Tuning and Temperature-Triggered Anomalous Eu ³⁺ -Related Photoemission Enhancement via Interplay of Accelerated Energy Transfer and Release of Defect-Trapped Electrons in the Tb ³⁺ ,Eu ³⁺ -Doped Strontium–Aluminum Chlorites. ACS Applied Materials & & Amp; Interfaces, 2018, 10, 36157-36170.	8.0	47

#	Article	IF	Citations
217	Phenylene-bridged perylenediimide-porphyrin acceptors for non-fullerene organic solar cells. Sustainable Energy and Fuels, 2018, 2, 2616-2624.	4.9	30
218	Solution-based SnGaO thin-film transistors for Zn- and In-free oxide electronic devices. Applied Physics Letters, 2018, 113, .	3.3	22
219	Highly Active, Selective, and Stable Direct H ₂ O ₂ Generation by Monodispersive Pd–Ag Nanoalloy. ACS Applied Materials & Interfaces, 2018, 10, 21291-21296.	8.0	37
220	Probing oxide-ion conduction in low-temperature SOFCs. Nano Energy, 2018, 50, 88-96.	16.0	22
221	Tailored transition metal-doped nickel phosphide nanoparticles for the electrochemical oxygen evolution reaction (OER). Chemical Communications, 2018, 54, 8630-8633.	4.1	73
222	Surface engineering at the interface of core/shell nanoparticles promotes hydrogen peroxide generation. National Science Review, 2018, 5, 895-906.	9.5	21
223	Intermetallic <i>hcp</i> -PtBi/ <i>fcc</i> -Pt Core/Shell Nanoplates Enable Efficient Bifunctional Oxygen Reduction and Methanol Oxidation Electrocatalysis. ACS Catalysis, 2018, 8, 5581-5590.	11.2	153
224	Wrinkled Rh ₂ P Nanosheets as Superior pHâ€Universal Electrocatalysts for Hydrogen Evolution Catalysis. Advanced Energy Materials, 2018, 8, 1801891.	19.5	116
225	All-inorganic perovskite nanocrystal scintillators. Nature, 2018, 561, 88-93.	27.8	1,274
226	Universal Strategy for Ultrathin Pt–M (M = Fe, Co, Ni) Nanowires for Efficient Catalytic Hydrogen Generation. ACS Applied Materials & Samp; Interfaces, 2018, 10, 22257-22263.	8.0	36
227	Potential Probing Techniques For Future Energy Supply System-Solid Oxide Fuel Cells (SOFCs)., 2018,,.		0
228	The screened pseudo-charge repulsive potential in perturbed orbitals for band calculations by DFT+U. Physical Chemistry Chemical Physics, 2017, 19, 8008-8025.	2.8	40
229	Energy conversion modeling of the intrinsic persistent luminescence of solids via energy transfer paths between transition levels. Physical Chemistry Chemical Physics, 2017, 19, 9457-9469.	2.8	8
230	Doping of RE ions in the 2D ZnO layered system to achieve low-dimensional upconverted persistent luminescence based on asymmetric doping in ZnO systems. Physical Chemistry Chemical Physics, 2017, 19, 12683-12711.	2.8	15
231	Constructing three-dimensional porous Ni/Ni ₃ S ₂ nano-interfaces for hydrogen evolution electrocatalysis under alkaline conditions. Dalton Transactions, 2017, 46, 10700-10706.	3.3	41
232	Confining Excitation Energy in Er ³⁺ â€Sensitized Upconversion Nanocrystals through Tm ³⁺ â€Mediated Transient Energy Trapping. Angewandte Chemie - International Edition, 2017, 56, 7605-7609.	13.8	259
233	Confining Excitation Energy in Er ³⁺ â€6ensitized Upconversion Nanocrystals through Tm ³⁺ â€Mediated Transient Energy Trapping. Angewandte Chemie, 2017, 129, 7713-7717.	2.0	56
234	Room-temperature methane gas sensing properties based on in situ reduced graphene oxide incorporated with tin dioxide. Journal of Materials Chemistry A, 2017, 5, 11131-11142.	10.3	40

#	Article	IF	Citations
235	Interface formation energy, bonding, energy band alignment in α-NaYF 4 related core shell models: For future multi-layer core shell luminescence materials. Journal of Rare Earths, 2017, 35, 315-334.	4.8	7
236	"Energy Relay Center―for doped mechanoluminescence materials: a case study on Cu-doped and Mn-doped CaZnOS. Physical Chemistry Chemical Physics, 2017, 19, 1190-1208.	2.8	35
237	Engineering stepped edge surface structures of MoS ₂ sheet stacks to accelerate the hydrogen evolution reaction. Energy and Environmental Science, 2017, 10, 593-603.	30.8	284
238	Unraveling the correlation between oxide-ion motion and upconversion luminescence in \hat{l}^2 -La2Mo2O9:Yb3+,Er3+ derivatives. Journal of Materials Chemistry C, 2017, 5, 10965-10970.	5.5	8
239	Cu ^{II} â€Mediated Ultraâ€efficient Electrooxidation of Glucose. ChemElectroChem, 2017, 4, 2788-2792.	3.4	20
240	Toward Bi ³⁺ Red Luminescence with No Visible Reabsorption through Manageable Energy Interaction and Crystal Defect Modulation in Single Bi ³⁺ -Doped ZnWO ₄ Crystal. Chemistry of Materials, 2017, 29, 8412-8424.	6.7	148
241	Comparison and correlation of structural disorder caused by anion Frenkel in affecting ion conduction of La2Hf2O7 and La2Mo2O9 as high performance electrolytes in SOFCs. MRS Advances, 2017, 2, 3317-3322.	0.9	7
242	Unravelling the energy transfer of Er ³⁺ -self-sensitized upconversion in Er ³⁺ –Yb ³⁺ –Er ³⁺ clustered core@shell nanoparticles. Nanoscale, 2017, 9, 18490-18497.	5.6	10
243	"Energy Selection Channels―for High-Performance Electrolyte: Anion-Frenkel Defect Pair as Dominant Source for O Ion Conductions in Pyrochlore-type Lanthanide Hafnium Oxides SOFC. Inorganic Chemistry, 2017, 56, 7975-7984.	4.0	25
244	4f fine-structure levels as the dominant error in the electronic structures of binary lanthanide oxides. Journal of Computational Chemistry, 2016, 37, 825-835.	3.3	49
245	Strong compensation hinders the p-type doping of ZnO: a glance over surface defect levels. Solid State Communications, 2016, 237-238, 34-37.	1.9	22
246	Unraveling energy conversion modeling in the intrinsic persistent upconverted luminescence of solids: a study of native point defects in antiferromagnetic Er ₂ O ₃ . Physical Chemistry Chemical Physics, 2016, 18, 13564-13582.	2.8	29
247	Fundamental View of Electronic Structures of \hat{l}^2 -NaYF ₄ , \hat{l}^2 -NaGdF ₄ , and \hat{l}^2 -NaLuF ₄ . Journal of Physical Chemistry C, 2016, 120, 18858-18870.	3.1	42
248	Energy harvesting and conversion mechanisms for intrinsic upconverted mechano-persistent luminescence in CaZnOS. Physical Chemistry Chemical Physics, 2016, 18, 25946-25974.	2.8	46
249	Atomic relaxation, stability and electronic properties of Mg2Sn (100) surfaces from ab-initio calculations. Journal of Magnesium and Alloys, 2016, 4, 62-67.	11.9	10
250	A new family of sp 3 -hybridized carbon phases. Chinese Physics B, 2016, 25, 016103.	1.4	8
251	Intrinsic deep hole trap levels in Cu2O with self-consistent repulsive Coulomb energy. Solid State Communications, 2016, 230, 49-53.	1.9	28
252	Nature of electrical resistivity and structural stability in N-doped GeTe models for reliable phase-change materials. Physica Status Solidi (B): Basic Research, 2015, 252, 431-441.	1.5	11

#	Article	IF	CITATIONS
253	Ab initio models for polycrystalline diamond constructed from cold-compressed disordered graphite. Materials Research Express, 2015, 2, 045601.	1.6	1
254	Semiconductor–metal and metal–semiconductor transitions in twisting graphene nanoribbons. Solid State Communications, 2015, 202, 39-42.	1.9	5
255	Tunable dipole induced hydrogen bonds between a hydrogen molecule and alkali halides. Physical Chemistry Chemical Physics, 2015, 17, 20361-20367.	2.8	3
256	Low-temperature phase transformation from nanotube to sp ³ superhard carbon phase. Chinese Physics B, 2015, 24, 066102.	1.4	0
257	Predictions of mechanical and thermodynamic properties of Mg ₁₇ Al ₁₂ and Mg ₂ Sn from first-principles calculations. Philosophical Magazine, 2015, 95, 1626-1645.	1.6	29
258	The role of tryptophans in the UV-B absorption of a UVR8 photoreceptor – a computational study. Physical Chemistry Chemical Physics, 2015, 17, 10786-10794.	2.8	15
259	Native Point Defects in CaS: Focus on Intrinsic Defects and Rare Earth Ion Dopant Levels for Up-converted Persistent Luminescence. Inorganic Chemistry, 2015, 54, 11423-11440.	4.0	47
260	Stabilizing reconstruction induced by O protrusions of the ZnO (0001) polar surface. RSC Advances, 2014, 4, 54249-54255.	3.6	2
261	A unique feature of chiral transition of a difluorobenzo[c]phenanthrene molecule confined in a boron-nitride nanotube based on molecular dynamics simulations. Chemical Physics Letters, 2014, 591, 265-267.	2.6	5
262	Study of CeO ₂ and Its Native Defects by Density Functional Theory with Repulsive Potential. Journal of Physical Chemistry C, 2014, 118, 24248-24256.	3.1	86
263	Polycrystalline boron nitride constructed from hexagonal boron nitride. RSC Advances, 2014, 4, 38589-38593.	3.6	7
264	Superiority of DFT+U with non-linear core correction for open-shell binary rare-earth metal oxides: a case study of native point defects in cerium oxides. Philosophical Magazine, 2014, 94, 3052-3071.	1.6	24
265	Basis set effect on defect induced spin polarization of a carbon nanotube in density functional theory calculations. Chemical Physics Letters, 2013, 585, 107-111.	2.6	4
266	Bonding and optical contrast in phase change memory materials. Physica Status Solidi (B): Basic Research, 2012, 249, 1867-1873.	1.5	6
267	Defect models and electrical storage mechanism in GeSbTe phase change materials. Journal of Non-Crystalline Solids, 2012, 358, 2393-2397.	3.1	18
268	Nature of defects and gap states in GeTe model phase change materials. Physical Review B, 2012, 85, .	3.2	35
269	Bonding origin of optical contrast in phase-change memory materials. Physical Review B, 2010, 81, .	3.2	209
270	Solarâ€driven Overproduction of Biofuels inÂMicroorganisms. Angewandte Chemie, 0, , .	2.0	0