Rodger Kram

List of Publications by Year

 in descending order[^0]
1 How Animals Move: An Integrative View. Science, 2000, 288, 100-106. 12.6 1,357
2 Energetics of running: a new perspective. Nature, 1990, 346, 265-267. 27.8 656
Effects of obesity and sex on the energetic cost and preferred speed of walking. Journal of Applied2.5461Physiology, 2006, 100, 390-398.The Effects of Adding Mass to the Legs on the Energetics and Biomechanics of Walking. Medicine andSimultaneous positive and negative external mechanical work in human walking. Journal ofBiomechanics, 2002, 35, 117-124.
427Mechanical and metabolic requirements for active lateral stabilization in human walking. Journal ofBiomechanics, 2004, 37, 827-835.2.1378
7 Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking. Journal of Experimental Biology, 2002, 205, 3717-27. 3608 Effects of Obesity on the Biomechanics of Walking at Different Speeds. Medicine and Science in Sportsand Exercise, 2007, 39, 1632-1641.
0.4 287
Energy cost and muscular activity required for propulsion during walking. Journal of Applied
$9 \quad$ Physiology, 2003, 94, 1766-1772. 2.5 265
Ground reaction forces during downhill and uphill running. Journal of Biomechanics, 2005, 38, 445-452. 2.1 255
10
233
Metabolic cost of generating muscular force in human walking: insights from load-carrying and
11 speed experiments. Journal of Applied Physiology, 2003, 95, 172-183.
12 A Comparison of the Energetic Cost of Running in Marathon Racing Shoes. Sports Medicine, 2018, 48,6.5225
1009-1019.
2.5190Independent metabolic costs of supporting body weight and accelerating body mass during walking.Journal of Applied Physiology, 2005, 98, 579-583.Force treadmill for measuring vertical and horizontal ground reaction forces. Journal of Applied2.5185Physiology, 1998, 85, 764-769.
Energetic Cost and Preferred Speed of Walking in Obese vs. Normal Weight Women. Obesity, 2005, 13, 891-899. 4.0 174
15Metabolic Cost of Running Barefoot versus Shod. Medicine and Science in Sports and Exercise, 2012,44, 1519-1525.
19
20

The fastest runner on artificial legs: different limbs, similar function?. Journal of Applied Physiology, 2009, 107, 903-911.

Biomechanical and energetic determinants of the walkâ€"trot transition in horses. Journal of Experimental Biology, 2004, 207, 4215-4223.

21	Metabolic cost of generating horizontal forces during human running. Journal of Applied Physiology, 1999, 86, 1657-1662.	2.5	130
22	Energy cost and muscular activity required for leg swing during walking. Journal of Applied Physiology, 2005, 99, 23-30.	2.5	130
23	The locomotor kinematics of Asian and African elephants: changes with speed and size. Journal of Experimental Biology, 2006, 209, 3812-3827.	1.7	124
24	The effects of grade and speed on leg muscle activations during walking. Gait and Posture, 2012, 35, 143-147.	1.4	123
25	Are fast-moving elephants really running?. Nature, 2003, 422, 493-494.	27.8	115

$\left.\begin{array}{lll}26 & \text { Limitations to maximum running speed on flat curves. Journal of Experimental Biology, 2007, 210, } \\ 971-982 .\end{array}\right] 1.7410$

How does age affect leg muscle activity/coactivity during uphill and downhill walking?. Gait and	
Posture, 2013, 37, 378-384.	1.4

29 The effects of step width and arm swing on energetic cost and lateral balance during running. Journal of Biomechanics, 2011, 44, 1291-1295.How does age affect leg muscle activity/coactivity during uphill and downhill walking?. Gait andPosture, 2013, 37, 378-384.

$$
1.1
$$

99
30 Effects of independently altering body weight and body mass on the metabolic cost of running. Journal of Experimental Biology, 2007, 210, 4418-4427.1.79422
2
2
2
2
27
27
28
29
30
The Biomechanics of Competitive Male Runners in Three Marathon Racing Shoes: A Randomized 6.5 94
31 Crossover Study. Sports Medicine, 2019, 49, 133-143.2.5Walking in simulated reduced gravity: mechanical energy fluctuations and exchange. Journal ofApplied Physiology, 1999, 86, 383-390.
91
$2.3 \quad 86$
33 Running-specific prostheses limit ground-force during sprinting. Biology Letters, 2010, 6, 201-204.
Advanced age and the mechanics of uphill walking: A joint-level, inverse dynamic analysis. Gait and
Society B: Biological Sciences, 2013, 280, 20122784.2.683
37

> Leg stiffness of sprinters using running-specific prostheses. Journal of the Royal Society Interface, $2012,9,1975-1982$.
3.4

76

How Biomechanical Improvements in Running Economy Could Break the 2-hour Marathon Barrier.
6.5

76
$38 \quad$ Sports Medicine, 2017, 47, 1739-1750.
$0.4 \quad 75$
39 A Test of the Metabolic Cost of Cushioning Hypothesis during Unshod and Shod Running. Medicine
and Science in Sports and Exercise, 2014, 46, 324-329.
2.1

67
40 Advanced age affects the individual leg mechanics of level, uphill, and downhill walking. Journal of
Biomechanics, 2013, 46, 535-540.

Partitioning the Metabolic Cost of Human Running: A Task-by-Task Approach. Integrative and
Comparative Biology, 2014, 54, 1084-1098.
$2.0 \quad 67$

Extrapolating Metabolic Savings in Running: Implications for Performance Predictions. Frontiers in
Physiology, 2019, 10, 79.
2.8

66
Calculating metabolic energy expenditure across a wide range of exercise intensities: the equation
matters. Applied Physiology, Nutrition and Metabolism, 2018, 43, 639-642.

2014, 29, 68-74.
1.2

64
45 The kangaroo's tail propels and powers pentapedal locomotion. Biology Letters, 2014, 10, 20140381.
1.7

59
46 Mechanical energy fluctuations during hill walking: the effects of slope on inverted pendulum exchange. Journal of Experimental Biology, 2006, 209, 4895-4900.

```
\(47 \quad\) Activity and functions of the human gluteal muscles in walking, running, sprinting, and climbing.
American Journal of Physical Anthropology, 2014, 153, 124-131.
```

2.158

What determines the metabolic cost of human running across a wide range of velocities?. Journal of
Experimental Biology, 2018, 221, .
1.7

56

Metabolic energy and muscular activity required for leg swing in running. Journal of Applied
2.5

51
Physiology, 2005, 98, 2126-2131.

Obesity does not increase external mechanical work per kilogram body mass during walking. Journal of Biomechanics, 2009, 42, 2273-2278.
2.1

51

51 Pedelecs as a physically active transportation mode. European Journal of Applied Physiology, 2016, 116,
$1565-1573$.
51 Pedelecs as a physically active transportation mode. European Journal of Applied Physiology, 2016, 116,
$1565-1573$.
2.5

51

Muscle contributions to propulsion and braking during walking and running: Insight from external force perturbations. Gait and Posture, 2014, 40, 594-599.

The metabolic cost of human running: is swinging the arms worth it?. Journal of Experimental Biology, 2014, 217, 2456-2461.

Energetics of vertical kilometer foot races; is steeper cheaper?. Journal of Applied Physiology, 2016,

58 Contributions of metabolic and temporal costs to human gait selection. Journal of the Royal Society

59 The energetic cost of maintaining lateral balance during human running. Journal of Applied
Physiology, 2012, 112, 427-434.

Biomechanics, 2001, 34, 679-685.

Use aerobic energy expenditure instead of oxygen uptake to quantify exercise intensity and predict
endurance performance. Journal of Applied Physiology, 2018, 125, 672-674.
2.5

28

62 Does Metabolic Rate Increase Linearly with Running Speed in all Distance Runners?. Sports Medicine
 International Open, 2018, 02, E1-E8.

Counterpoint: Artificial legs do not make artificially fast running speeds possible. Journal of Applied
63 Physiology, 2010, 108, 1012-1014.

Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations. Journal of Experimental Biology, 2016, 219, 851-858.
1.7

26

64 | Maximum-speed curve-running biomechanics of sprinters with and |
| :--- |
| amputations. Journal of Experimental Biology, 2016, 219, 851-858. |

$$
\begin{aligned}
& 65 \text { Low metabolic cost of locomotion in ornate box turtles, <i> Terrapene ornata</i>. Journal of } \\
& \text { Experimental Biology, 2008, 211, 3671-3676. }
\end{aligned}
$$

$1.7 \quad 22$

66 Why is walker-assisted gait metabolically expensive?. Gait and Posture, 2011, 34, 265-269.
1.4

22
Dynamic stability of running: The effects of speed and leg amputations on the maximal Lyapunov
exponent. Chaos, 2013, 23, 043131.

Measuring Changes in Aerodynamic/Rolling Resistances by Cycle-Mounted Power Meters. Medicine and Science in Sports and Exercise, 2011, 43, 853-860.

Running for Exercise Mitigates Age-Related Deterioration of Walking Economy. PLoS ONE, 2014, 9,
2.5

21
el13471.

Preferred walking speed on rough terrain; is it all about energetics?. Journal of Experimental Biology,

The metabolic costs of walking and running up a 30-degree incline: implications for vertical kilometer
Commentaries on Viewpoint: Physiology and fast marathons. Journal of Applied Physiology, 2020, 128,77 Commentaries on Viewpoint: Physiology and fast marathons. Journal of Applied Physiology, 2020, 128,
1069-1085.78 Ground reaction forces during steeplechase hurdling and waterjumps. Sports Biomechanics, 2017, 16,152-165.
Do poles save energy during steep uphill walking?. European Journal of Applied Physiology, 2019, 119, 1557-1563.
80 Level, uphill and downhill running economy values are strongly inter-correlated. European Journal of Applied Physiology, 2019, 119, 257-264. 2.5
Effects of course design (curves and elevation undulations) on marathon running performance: a
81 comparison of Breaking 2 in Monza and the INEOS 1:59 Challenge in Vienna. Journal of Sports Sciences, 2.0
2021, 39, 754-759.11
Pound for pound: Working out how obesity influences the energetics of walking. Journal of Applied
2.5 10
Physiology, 2009, 106, 1755-1756.
83 Factors affecting the increased energy expenditure during passive cycling. European Journal of
Applied Physiology, 2012, 112, 3341-3348.
2.5 10$84 \quad \begin{aligned} & \text { Forces and mechanical energy fluctuations during dia } \\ & \text { Journal of Experimental Biology, 2014, 217, 3779-85. }\end{aligned}$
1.710
85 Optimal Starting Block Configuration in Sprint Running: A Comparison of Biological and Prosthetic 0.8 10
Legs. Journal of Applied Biomechanics, 2014, 30, 381-389.Cardiometabolic Effects of a Workplace Cycling Intervention. Journal of Physical Activity and Health,2.09
2019, 16, 547-555.
2.1 8Effects of shoe type and shoeâ€"pedal interface on the metabolic cost of bicycling. Footwear Science,
2016, 8, 19-22.Modelling the effect of curves on distance running performance. PeerJ, 2019, 7, e8222.
97 The metabolic cost of emulated aerodynamic drag forces in marathon running. Journal of Applied Physiology, 0, , .$2.5 \quad 3$
The Metabolic Cost of Locomotion; Muscle by Muscle. Exercise and Sport Sciences Reviews, 2011, 39, 57-58.
99 Authorâ $€^{T M}$ s Reply to Candau et al.: Comment on: â€œHow Biomechanical Improvements in Running Economy 6.5 2
100 No effect of cycling shoe sole stiffness on sprint performance. Footwear Science, 2021, 13, 69-77. 2.1 2
101 The influence of bicycle lean on maximal power output during sprint cycling. Journal of
Biomechanics, 2021, 125, 110595. 2.1 2
102 Are Efficiency and the Cost of Generating Force Both Relevant Concepts?. Journal of AppliedBiomechanics, 1997, 13, 460-463.0.81
103 Bouncing to conclusions: clear evidence for the metabolic cost of generating muscular force. Journal of Applied Physiology, 2011, 110, 865-866. 1The Energetic Cost of Maintaining Lateral Balance in Human Running. Medicine and Science in Sports
and Exercise, $2011,43,100$. Applied Physiology, 2017, 117, 2021-2027.

[^0]: Source: https:/|exaly.com/author-pdf/3605256/publications.pdf
 Version: 2024-02-01

