Sandy R Shultz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3605117/publications.pdf

Version: 2024-02-01

71102 114465 4,930 121 41 63 citations h-index g-index papers 123 123 123 4916 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Targeting the Cerebrovascular System: Next-Generation Biomarkers and Treatment for Mild Traumatic Brain Injury. Neuroscientist, 2022, 28, 594-612.	3.5	15
2	Pediatric traumatic brain injury and a subsequent transient immune challenge independently influenced chronic outcomes in male mice. Brain, Behavior, and Immunity, 2022, 100, 29-47.	4.1	8
3	Micro-RNA levels and symptom profile after mild traumatic brain injury: A longitudinal cohort study. Journal of Clinical Neuroscience, 2022, 95, 81-87.	1.5	7
4	Decrease in Plasma miR-27a and miR-221 After Concussion in Australian Football Players. Biomarker Insights, 2022, 17, 117727192210813.	2.5	9
5	Serum Protein Biomarkers of Inflammation, Oxidative Stress, and Cerebrovascular and Glial Injury in Concussed Australian Football Players. Journal of Neurotrauma, 2022, 39, 800-808.	3 . 4	4
6	Sub-acute Changes on MRI Measures of Cerebral Blood Flow and Venous Oxygen Saturation in Concussed Australian Rules Footballers. Sports Medicine - Open, 2022, 8, 45.	3.1	7
7	Aging, the immune response, and traumatic brain injury. , 2022, , 149-159.		0
8	White Matter Abnormalities in Retired Professional Rugby League Players with a History of Concussion. Journal of Neurotrauma, 2021, 38, 983-988.	3.4	20
9	Is the glymphatic system the missing link between sleep impairments and neurological disorders? Examining the implications and uncertainties. Progress in Neurobiology, 2021, 198, 101917.	5.7	50
10	Elevated Serum Interleukin- $1\hat{l}^2$ Levels in Male, but not Female, Collision Sport Athletes with a Concussion History. Journal of Neurotrauma, 2021, 38, 1350-1357.	3 . 4	13
11	Behavioral, axonal, and proteomic alterations following repeated mild traumatic brain injury: Novel insights using a clinically relevant rat model. Neurobiology of Disease, 2021, 148, 105151.	4.4	27
12	Cognitive ocular motor deficits and white matter damage chronically after sports-related concussion. Brain Communications, 2021, 3, fcab213.	3.3	4
13	A systemic immune challenge to model hospital-acquired infections independently regulates immune responses after pediatric traumatic brain injury. Journal of Neuroinflammation, 2021, 18, 72.	7.2	10
14	Diffusion Imaging Reveals Sex Differences in the White Matter Following Sports-Related Concussion. Cerebral Cortex, 2021, 31, 4411-4419.	2.9	20
15	White and Gray Matter Abnormalities in Australian Footballers With a History of Sports-Related Concussion: An MRI Study. Cerebral Cortex, 2021, 31, 5331-5338.	2.9	7
16	Temporal profile and utility of serum neurofilament light in a rat model of mild traumatic brain injury. Experimental Neurology, 2021, 341, 113698.	4.1	17
17	Activation of the Protein Kinase R–Like Endoplasmic Reticulum Kinase (PERK) Pathway of the Unfolded Protein Response after Experimental Traumatic Brain Injury and Treatment with a PERK Inhibitor. Neurotrauma Reports, 2021, 2, 330-342.	1.4	5
18	The Known Unknowns: An Overview of the State of Blood-Based Protein Biomarkers of Mild Traumatic Brain Injury. Journal of Neurotrauma, 2021, 38, 2652-2666.	3.4	35

#	Article	IF	CITATIONS
19	The biological significance and clinical utility of emerging blood biomarkers for traumatic brain injury. Neuroscience and Biobehavioral Reviews, 2021, 130, 433-447.	6.1	33
20	Gut microbiome depletion and repetitive mild traumatic brain injury differentially modify bone development in male and female adolescent rats. Bone Reports, 2021, 15, 101123.	0.4	2
21	Prolonged elevation of serum neurofilament light after concussion in male Australian football players. Biomarker Research, 2021, 9, 4.	6.8	44
22	Pain in the Developing Brain: Early Life Factors Alter Nociception and Neurobiological Function in Adolescent Rats. Cerebral Cortex Communications, 2021, 2, tgab014.	1.6	8
23	Serum Neurofilament Light as a Biomarker of Traumatic Brain Injury in the Presence of Concomitant Peripheral Injury. Biomarker Insights, 2021, 16, 117727192110534.	2.5	10
24	Clinical Relevance of Behavior Testing in Animal Models of Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 2381-2400.	3.4	36
25	The genetic ablation of tau improves long-term, but not short-term, functional outcomes after experimental traumatic brain injury in mice. Brain Injury, 2020, 34, 131-139.	1.2	14
26	Inhibitory neuronal changes following a mixed diffuseâ€focal model of traumatic brain injury. Journal of Comparative Neurology, 2020, 528, 175-198.	1.6	12
27	The need to incorporate aged animals into the preclinical modeling of neurological conditions. Neuroscience and Biobehavioral Reviews, 2020, 109, 114-128.	6.1	33
28	Catastrophic consequences: can the feline parasite Toxoplasma gondii prompt the purrfect neuroinflammatory storm following traumatic brain injury?. Journal of Neuroinflammation, 2020, 17, 222.	7.2	4
29	Serum Protein Biomarker Findings Reflective of Oxidative Stress and Vascular Abnormalities in Male, but Not Female, Collision Sport Athletes. Frontiers in Neurology, 2020, 11, 549624.	2.4	20
30	Contrast enhanced magnetic resonance imaging highlights neurovasculature changes following experimental traumatic brain injury in the rat. Scientific Reports, 2020, 10, 21252.	3.3	5
31	Shortened telomeres and serum protein biomarker abnormalities in collision sport athletes regardless of concussion history and sex. Journal of Concussion, 2020, 4, 205970022097560.	0.6	13
32	The interaction of the circadian and immune system: Desynchrony as a pathological outcome to traumatic brain injury. Neurobiology of Sleep and Circadian Rhythms, 2020, 9, 100058.	2.8	13
33	Neurological heterotopic ossification: novel mechanisms, prognostic biomarkers and prophylactic therapies. Bone Research, 2020, 8, 42.	11.4	26
34	Examining the Effects of Anabolic–Androgenic Steroids on Repetitive Mild Traumatic Brain Injury (RmTBI) Outcomes in Adolescent Rats. Brain Sciences, 2020, 10, 258.	2.3	3
35	A novel rat model of heterotopic ossification after polytrauma with traumatic brain injury. Bone, 2020, 133, 115263.	2.9	16
36	The Neurological Consequences of Engaging in Australian Collision Sports. Journal of Neurotrauma, 2020, 37, 792-809.	3.4	17

#	Article	IF	CITATIONS
37	Beyond the Brain: Peripheral Interactions after Traumatic Brain Injury. Journal of Neurotrauma, 2020, 37, 770-781.	3.4	73
38	The NLRP3 inflammasome in traumatic brain injury: potential as a biomarker and therapeutic target. Journal of Neuroinflammation, 2020, 17, 104.	7.2	131
39	Repetitive Mild Traumatic Brain Injury Alters Glymphatic Clearance Rates in Limbic Structures of Adolescent Female Rats. Scientific Reports, 2020, 10, 6254.	3.3	48
40	Experimental traumatic brain injury does not lead to lung infection. Journal of Neuroimmunology, 2020, 343, 577239.	2.3	3
41	Investigating the cumulative effects of î"9-tetrahydrocannabinol and repetitive mild traumatic brain injury on adolescent rats. Brain Communications, 2020, 2, fcaa042.	3.3	6
42	Transactive Response DNA-Binding Protein 43 Abnormalities after Traumatic Brain Injury. Journal of Neurotrauma, 2019, 36, 87-99.	3.4	26
43	Affective, neurocognitive and psychosocial disorders associated with traumatic brain injury and post-traumatic epilepsy. Neurobiology of Disease, 2019, 123, 27-41.	4.4	76
44	Modelling traumatic brain injury and posttraumatic epilepsy in rodents. Neurobiology of Disease, 2019, 123, 8-19.	4.4	46
45	Targeting neurodegeneration to prevent post-traumatic epilepsy. Neurobiology of Disease, 2019, 123, 100-109.	4.4	26
46	Disease-modifying effects of a novel T-type calcium channel antagonist, Z944, in a model of temporal lobe epilepsy. Progress in Neurobiology, 2019, 182, 101677.	5.7	23
47	Clinically Relevant Outcome Measures for Experimental Traumatic Brain Injury (TBI) Studies. Neuromethods, 2019, , 263-294.	0.3	0
48	Repeated mild traumatic brain injuries induce persistent changes in plasma protein and magnetic resonance imaging biomarkers in the rat. Scientific Reports, 2019, 9, 14626.	3.3	35
49	Chronic traumatic encephalopathy neuropathology might not be inexorably progressive or unique to repetitive neurotrauma. Brain, 2019, 142, 3672-3693.	7.6	57
50	Bone Health in Rats With Temporal Lobe Epilepsy in the Absence of Anti-Epileptic Drugs. Frontiers in Pharmacology, 2019, 10, 1278.	3.5	4
51	Inflammation in Traumatic Brain Injury: Roles for Toxic A1 Astrocytes and Microglial–Astrocytic Crosstalk. Neurochemical Research, 2019, 44, 1410-1424.	3.3	82
52	Targeting high-mobility group box protein 1 (HMGB1) in pediatric traumatic brain injury: Chronic neuroinflammatory, behavioral, and epileptogenic consequences. Experimental Neurology, 2019, 320, 112979.	4.1	38
53	Harmonization of the pipeline for seizure detection to phenotype post-traumatic epilepsy in a preclinical multicenter study on post-traumatic epileptogenesis. Epilepsy Research, 2019, 156, 106131.	1.6	24
54	Neuroendocrine Whiplash: Slamming the Breaks on Anabolic-Androgenic Steroids Following Repetitive Mild Traumatic Brain Injury in Rats May Worsen Outcomes. Frontiers in Neurology, 2019, 10, 481.	2.4	3

#	Article	IF	CITATIONS
55	Aged rats have an altered immune response and worse outcomes after traumatic brain injury. Brain, Behavior, and Immunity, 2019, 80, 536-550.	4.1	35
56	Infections after a traumatic brain injury: The complex interplay between the immune and neurological systems. Brain, Behavior, and Immunity, 2019, 79, 63-74.	4.1	63
57	Harmonization of pipeline for detection of HFOs in a rat model of post-traumatic epilepsy in preclinical multicenter study on post-traumatic epileptogenesis. Epilepsy Research, 2019, 156, 106110.	1.6	15
58	Mild Closed-Head Injury in Conscious Rats Causes Transient Neurobehavioral and Glial Disturbances: A Novel Experimental Model of Concussion. Journal of Neurotrauma, 2019, 36, 2260-2271.	3.4	25
59	Cover Image, Volume 527, Issue 5. Journal of Comparative Neurology, 2019, 527, C1.	1.6	0
60	Harmonization of lateral fluid-percussion injury model production and post-injury monitoring in a preclinical multicenter biomarker discovery study on post-traumatic epileptogenesis. Epilepsy Research, 2019, 151, 7-16.	1.6	28
61	Informatics tools to assess the success of procedural harmonization in preclinical multicenter biomarker discovery study on post-traumatic epileptogenesis. Epilepsy Research, 2019, 150, 17-26.	1.6	5
62	Harmonization of pipeline for preclinical multicenter plasma protein and miRNA biomarker discovery in a rat model of post-traumatic epileptogenesis. Epilepsy Research, 2019, 149, 92-101.	1.6	17
63	Harmonization of pipeline for preclinical multicenter MRI biomarker discovery in a rat model of post-traumatic epileptogenesis. Epilepsy Research, 2019, 150, 46-57.	1.6	25
64	Ageâ€dependent release of highâ€mobility group box proteinâ€1 and cellular neuroinflammation after traumatic brain injury in mice. Journal of Comparative Neurology, 2019, 527, 1102-1117.	1.6	37
65	The influence of immunological stressors on traumatic brain injury. Brain, Behavior, and Immunity, 2018, 69, 618-628.	4.1	34
66	Telomere length and advanced diffusion MRI as biomarkers for repetitive mild traumatic brain injury in adolescent rats. Neurolmage: Clinical, 2018, 18, 315-324.	2.7	36
67	Oculomotor Cognitive Control Abnormalities in Australian Rules Football Players with a History of Concussion. Journal of Neurotrauma, 2018, 35, 730-738.	3.4	29
68	Gambogic amide, a selective TrkA agonist, does not improve outcomes from traumatic brain injury in mice. Brain Injury, 2018, 32, 257-268.	1.2	14
69	Neurological heterotopic ossification: Current understanding and future directions. Bone, 2018, 109, 35-42.	2.9	70
70	Elimination of vesicular zinc alters the behavioural and neuroanatomical effects of social defeat stress in mice. Neurobiology of Stress, 2018, 9, 199-213.	4.0	14
71	A Concomitant Muscle Injury Does Not Worsen Traumatic Brain Injury Outcomes in Mice. Frontiers in Neurology, 2018, 9, 1089.	2.4	9
72	Diffusion <scp>MRI</scp> abnormalities in adolescent rats given repeated mild traumatic brain injury. Annals of Clinical and Translational Neurology, 2018, 5, 1588-1598.	3.7	27

#	Article	IF	Citations
73	Pre-Clinical Testing of Therapies for Traumatic Brain Injury. Journal of Neurotrauma, 2018, 35, 2737-2754.	3.4	68
74	Sport related concussion $\hat{a}\in$ Potential for biomarkers to improve acute management. Journal of Clinical Neuroscience, 2018, 56, 1-6.	1.5	20
75	Mild Traumatic Brain Injury in Adolescent Mice Alters Skull Bone Properties to Influence a Subsequent Brain Impact at Adulthood: A Pilot Study. Frontiers in Neurology, 2018, 9, 372.	2.4	18
76	Concussion incidence in amateur Australian Rules Footballers. Journal of Clinical Neuroscience, 2018, 56, 88-89.	1.5	8
77	Repeated mild traumatic brain injury can cause acute neurologic impairment without overt structural damage in juvenile rats. PLoS ONE, 2018, 13, e0197187.	2.5	46
78	Traumatic Brain Injury Results in Cellular, Structural and Functional Changes Resembling Motor Neuron Disease. Cerebral Cortex, 2017, 27, 4503-4515.	2.9	50
79	Inflammation in epileptogenesis after traumatic brain injury. Journal of Neuroinflammation, 2017, 14, 10.	7.2	194
80	Changes in Apparent Fiber Density and Track-Weighted Imaging Metrics in White Matter following Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2017, 34, 2109-2118.	3.4	55
81	MR Spectroscopy Findings in Retired Professional Rugby League Players. International Journal of Sports Medicine, 2017, 38, 241-252.	1.7	35
82	Sex matters: repetitive mild traumatic brain injury in adolescent rats. Annals of Clinical and Translational Neurology, 2017, 4, 640-654.	3.7	105
83	Accelerated kindling epileptogenesis in Tg4510 tau transgenic mice, but not in tau knockout mice. Epilepsia, 2017, 58, e136-e141.	5.1	30
84	Treatment with an interleukin-1 receptor antagonist mitigates neuroinflammation and brain damage after polytrauma. Brain, Behavior, and Immunity, 2017, 66, 359-371.	4.1	59
85	Differences in white matter structure between seizure prone (FAST) and seizure resistant (SLOW) rat strains. Neurobiology of Disease, 2017, 104, 33-40.	4.4	18
86	Sex-dependent changes in neuronal morphology and psychosocial behaviors after pediatric brain injury. Behavioural Brain Research, 2017, 319, 48-62.	2.2	45
87	The potential for animal models to provide insight into mild traumatic brain injury: Translational challenges and strategies. Neuroscience and Biobehavioral Reviews, 2017, 76, 396-414.	6.1	125
88	Level of knowledge and attitude towards sport-related concussion among the general?public. British Journal of Sports Medicine, 2017, 51, A68.1-A68.	6.7	3
89	Animal Models of Acquired Epilepsy and Tauopathies. , 2017, , 1031-1041.		5
90	Neuroanatomical differences in FAST and SLOW rat strains with differential vulnerability to kindling and behavioral comorbidities. Epilepsy and Behavior, 2016, 65, 42-48.	1.7	12

#	Article	IF	Citations
91	Behavioral, blood and magnetic resonance imaging biomarkers of experimental mild traumatic brain injury. Scientific Reports, 2016, 6, 28713.	3.3	72
92	Closed head experimental traumatic brain injury increases size and bone volume of callus in mice with concomitant tibial fracture. Scientific Reports, 2016, 6, 34491.	3.3	37
93	Deletion of the type-1 interferon receptor in APPSWE/PS1î"E9 mice preserves cognitive function and alters glial phenotype. Acta Neuropathologica Communications, 2016, 4, 72.	5.2	58
94	Sodium selenate, a protein phosphatase 2A activator, mitigates hyperphosphorylated tau and improves repeated mild traumatic brain injury outcomes. Neuropharmacology, 2016, 108, 382-393.	4.1	60
95	The effect of concomitant peripheral injury on traumatic brain injury pathobiology and outcome. Journal of Neuroinflammation, 2016, 13, 90.	7.2	102
96	Sodium selenate retards epileptogenesis in acquired epilepsy models reversing changes in protein phosphatase 2A and hyperphosphorylated tau. Brain, 2016, 139, 1919-1938.	7.6	100
97	Social dysfunction after pediatric traumatic brain injury: A translational perspective. Neuroscience and Biobehavioral Reviews, 2016, 64, 196-214.	6.1	63
98	Experimental Traumatic Brain Injury Induces Bone Loss in Rats. Journal of Neurotrauma, 2016, 33, 2154-2160.	3.4	26
99	Progesterone treatment reduces neuroinflammation, oxidative stress and brain damage and improves long-term outcomes in a rat model of repeated mild traumatic brain injury. Journal of Neuroinflammation, 2015, 12, 238.	7.2	112
100	Sodium selenate reduces hyperphosphorylated tau and improves outcomes after traumatic brain injury. Brain, 2015, 138, 1297-1313.	7.6	131
101	Experimental Traumatic Brain Injury Results in Long-Term Recovery of Functional Responsiveness in Sensory Cortex but Persisting Structural Changes and Sensorimotor, Cognitive, and Emotional Deficits. Journal of Neurotrauma, 2015, 32, 1333-1346.	3.4	62
102	CD11d integrin blockade reduces the systemic inflammatory response syndrome after traumatic brain injury in rats. Experimental Neurology, 2015, 271, 409-422.	4.1	49
103	Tibial Fracture Exacerbates Traumatic Brain Injury Outcomes and Neuroinflammation in a Novel Mouse Model of Multitrauma. Journal of Cerebral Blood Flow and Metabolism, 2015, 35, 1339-1347.	4.3	64
104	A preliminary video analysis of concussion in the National Rugby League. Brain Injury, 2015, 29, 1182-1185.	1.2	54
105	Intracerebroventricular injection of propionic acid, an enteric metabolite implicated in autism, induces social abnormalities that do not differ between seizure-prone (FAST) and seizure-resistant (SLOW) rats. Behavioural Brain Research, 2015, 278, 542-548.	2.2	56
106	Granulocyte-Macrophage Colony-Stimulating Factor Is Neuroprotective in Experimental Traumatic Brain Injury. Journal of Neurotrauma, 2014, 31, 976-983.	3.4	63
107	Hyperphosphorylated Tau is Implicated in Acquired Epilepsy and Neuropsychiatric Comorbidities. Molecular Neurobiology, 2014, 49, 1532-1539.	4.0	46
108	Workshop on Neurobiology of Epilepsy appraisal: New systemic imaging technologies to study the brain in experimental models of epilepsy. Epilepsia, 2014, 55, 819-828.	5.1	13

#	Article	IF	CITATIONS
109	Neuroimaging the Epileptogenic Process. Neurotherapeutics, 2014, 11, 347-357.	4.4	37
110	The Acute Phase of Mild Traumatic Brain Injury Is Characterized by a Distance-Dependent Neuronal Hypoactivity. Journal of Neurotrauma, 2014, 31, 1881-1895.	3.4	43
111	Propionic Acid Animal Model of Autism. , 2014, , 1755-1778.		13
112	Treatment with an anti-CD11d integrin antibody reduces neuroinflammation and improves outcome in a rat model of repeated concussion. Journal of Neuroinflammation, 2013, 10, 26.	7.2	66
113	Can structural or functional changes following traumatic brain injury in the rat predict epileptic outcome?. Epilepsia, 2013, 54, 1240-1250.	5.1	129
114	A CD11d Monoclonal Antibody Treatment Reduces Tissue Injury and Improves Neurological Outcome after Fluid Percussion Brain Injury in Rats. Journal of Neurotrauma, 2012, 29, 2375-2392.	3.4	77
115	Sub-concussive brain injury in the Long-Evans rat induces acute neuroinflammation in the absence of behavioral impairments. Behavioural Brain Research, 2012, 229, 145-152.	2.2	97
116	Repeated Mild Lateral Fluid Percussion Brain Injury in the Rat Causes Cumulative Long-Term Behavioral Impairments, Neuroinflammation, and Cortical Loss in an Animal Model of Repeated Concussion. Journal of Neurotrauma, 2012, 29, 281-294.	3.4	155
117	A single mild fluid percussion injury induces short-term behavioral and neuropathological changes in the Long–Evans rat: Support for an animal model of concussion. Behavioural Brain Research, 2011, 224, 326-335.	2.2	88
118	Intracerebroventricular injections of the enteric bacterial metabolic product propionic acid impair cognition and sensorimotor ability in the Long–Evans rat: Further development of a rodent model of autism. Behavioural Brain Research, 2009, 200, 33-41.	2.2	123
119	Intracerebroventricular injection of propionic acid, an enteric bacterial metabolic end-product, impairs social behavior in the rat: Implications for an animal model of autism. Neuropharmacology, 2008, 54, 901-911.	4.1	185
120	Enriched environment and the effect of age on ischemic brain damage. Brain Research, 2007, 1170, 31-38.	2.2	22
121	Sex differences in object location memory and spatial navigation in Long-Evans rats. Animal Cognition, 2007, 11, 129-137.	1.8	80