Marc Simon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3604949/publications.pdf

Version: 2024-02-01

204 papers 5,393 citations

39 h-index 63 g-index

207 all docs $\begin{array}{c} 207 \\ \text{docs citations} \end{array}$

times ranked

207

3248 citing authors

#	Article	IF	CITATIONS
1	Consistent characterization of the electronic ground state of iron(⟨scp⟩ii⟨ scp⟩) phthalocyanine from valence and core–shell electron spectroscopy. Physical Chemistry Chemical Physics, 2022, 24, 2656-2663.	2.8	1
2	UV-induced dissociation of CH ₂ Brl probed by intense femtosecond XUV pulses. Journal of Physics B: Atomic, Molecular and Optical Physics, 2022, 55, 014001.	1.5	7
3	Time-resolved study of recoil-induced rotation by X-ray pump – X-ray probe spectroscopy. Physical Chemistry Chemical Physics, 2022, 24, 6627-6638.	2.8	3
4	Ultrafast dissociation of ammonia: Auger Doppler effect and redistribution of the internal energy. Physical Chemistry Chemical Physics, 2022, 24, 5842-5854.	2.8	6
5	Electron delocalisation in conjugated sulfur heterocycles probed by resonant Auger spectroscopy. Physical Chemistry Chemical Physics, 2022, 24, 8477-8487.	2.8	4
6	Simulation of Auger decay dynamics in the hard X-ray regime: HCl as a showcase. Physical Chemistry Chemical Physics, 2022, 24, 6590-6604.	2.8	4
7	Recoil lineshapes in hard X-ray photoelectron spectra of large molecules – free and anchored-on-surface 10-aminodecane-1-thiol. Physical Chemistry Chemical Physics, 2022, 24, 10465-10474.	2.8	1
8	Resonant Auger decay induced by the symmetry-forbidden 1 <i>a</i> _{1<i>g</i>} transition of the SF ₆ molecule. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2022, 40, 042801.	2.1	2
9	Nonstatistical behavior of the photoionization of spin–orbit doublets. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 085001.	1.5	4
10	Hard x-ray photoelectron spectroscopy: a snapshot of the state-of-the-art in 2020. Journal of Physics Condensed Matter, 2021, 33, 233001.	1.8	55
11	Unified treatment of recoil and Doppler broadening in molecular high-energy photoemission. New Journal of Physics, 2021, 23, 063077.	2.9	6
12	A von Hamos spectrometer based on highly annealed pyrolytic graphite crystal in tender x-ray domain. Review of Scientific Instruments, 2021, 92, 073104.	1.3	3
13	Experimental and theoretical study of the Kr <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>L</mml:mi></mml:math> -shell Auger decay. Physical Review A, 2021, 104, .	2.5	4
14	Pulse Energy and Pulse Duration Effects in the Ionization and Fragmentation of Iodomethane by Ultraintense Hard X Rays. Physical Review Letters, 2021, 127, 093202.	7.8	6
15	The O K $<$ sup $>$ â 2 2 $<$ /sup $>$ V spectrum of CO: the influence of the second core-hole. Physical Chemistry Chemical Physics, 2021, 23, 10780-10790.	2.8	4
16	Inner-Shell-Ionization-Induced Femtosecond Structural Dynamics of Water Molecules Imaged at an X-Ray Free-Electron Laser. Physical Review X, 2021, 11, .	8.9	10
17	Hard x-ray spectroscopy and dynamics of isolated atoms and molecules: a review. Reports on Progress in Physics, 2020, 83, 016401.	20.1	28
18	Observation of the fastest chemical processes in the radiolysis of water. Science, 2020, 367, 179-182.	12.6	149

#	Article	IF	CITATIONS
19	Argon <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>K</mml:mi><mml:mi></mml:mi>< Auger spectrum: Initial states, core-hole lifetimes, shake, and knock-down processes. Physical Review A, 2020, 102, .</mml:mrow></mml:math>	mml:mi>L	.
20	Deep-core photoionization of krypton atoms below and above the 1s ionization threshold. Physical Review A, 2020, 101 , .	2.5	6
21	Fluorescence Time Delay in Multistep Auger Decay as an Internal Clock. Physical Review Letters, 2020, 124, 183001.	7.8	7
22	Strong configuration interaction in the 3p photoelectron spectrum of Kr. Physical Review A, 2020, 101,	2.5	3
23	Resonant Inelastic X-Ray Scattering Reveals Hidden Local Transitions of the Aqueous OH Radical. Physical Review Letters, 2020, 124, 236001.	7.8	28
24	Conjugate photoelectron recapture peaks in the high resolution Auger electron spectra following near-threshold Ar 2p photoionization. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 125001.	1.5	2
25	Coulomb explosion of CD3I induced by single photon deep inner-shell ionisation. Scientific Reports, 2020, 10, 1246.	3.3	2
26	Electron spectroscopy and dynamics of HBr around the Br 1s ^{â^'1} threshold. Physical Chemistry Chemical Physics, 2020, 22, 26806-26818.	2.8	5
27	Core-hole localization and ultra-fast dissociation in SF6. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 185101.	1.5	5
28	Single and multiple excitations in double-core-hole states of free water molecules. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 224002.	1.5	7
29	From synchrotrons for XFELs: the soft x-ray near-edge spectrum of the ESCA molecule. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 244011.	1.5	7
30	Argon 1s ^{â^'2} Auger hypersatellites. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 54, 024001.	1.5	3
31	Hard x-ray photoelectron spectroscopy on heavy atoms and heavy-element containing molecules using synchrotron radiation up to 35 keV at SPring-8 undulator beamlines. New Journal of Physics, 2019, 21, 043015.	2.9	19
32	Energy-Dependent Relative Cross Sections in Carbon 1s Photoionization: Separation of Direct Shake and Inelastic Scattering Effects in Single Molecules. Journal of Physical Chemistry A, 2019, 123, 7619-7636.	2.5	12
33	Photoelectron–Auger-electron angular-momentum transfer in core-ionized Ar: Beyond the standard post-collision-interaction model. Physical Review A, 2019, 99, .	2.5	7
34	Multi-slit-type interference in carbon 2s photoionization of polyatomic molecules: from a fundamental effect to structural parameters. Physical Chemistry Chemical Physics, 2019, 21, 13600-13610.	2.8	0
35	Si $1s < \sup \hat{a}^1 < \sup$	Tj ETQq1 2.8	1 0.78431 ⁴ 6
36	Recoil-induced ultrafast molecular rotation probed by dynamical rotational Doppler effect. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4877-4882.	7.1	16

#	Article	IF	CITATIONS
37	Deep core photoionization of iodine in CH ₃ I and CF ₃ I molecules: how deep down does the chemical shift reach?. Physical Chemistry Chemical Physics, 2019, 21, 5448-5454.	2.8	13
38	Role of geometrical cues in neuronal growth. Physical Review E, 2019, 99, 022408.	2.1	13
39	KL double core hole pre-edge states of HCl. Physical Chemistry Chemical Physics, 2018, 20, 2724-2730.	2.8	14
40	Chemical Understanding of the Limited Site-Specificity in Molecular Inner-Shell Photofragmentation. Journal of Physical Chemistry Letters, 2018, 9, 1156-1163.	4.6	31
41	Interplay of complex decay processes after argon <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mi>s</mml:mi><td>i>���ml:m</td><td>nro1&> </td></mml:mrow></mml:math>	i>���ml:m	nro 1&>
42	Roadmap of ultrafast x-ray atomic and molecular physics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 032003.	1.5	240
43	Acetylacetone photodynamics at a seeded free-electron laser. Nature Communications, 2018, 9, 63.	12.8	72
44	Time-resolved inner-shell photoelectron spectroscopy: From a bound molecule to an isolated atom. Physical Review A, 2018, 97, .	2.5	40
45	Time and position sensitive photon detector for coincidence measurements in the keV energy range. Review of Scientific Instruments, 2018, 89, 113101.	1.3	2
46	Coulomb explosion imaging of CH3I and CH2CII photodissociation dynamics. Journal of Chemical Physics, 2018, 149, 204313.	3.0	46
47	Ultrafast nuclear dynamics in the doubly-core-ionized water molecule observed via Auger spectroscopy. Physical Review A, 2018, 98, .	2.5	15
48	Double-core-hole states in CH3CN: Pre-edge structures and chemical-shift contributions. Journal of Chemical Physics, 2018, 149, 134313.	3.0	12
49	Relativistic and resonant effects in the ionization of heavy atoms by ultra-intense hard X-rays. Nature Communications, 2018, 9, 4200.	12.8	29
50	Photoionization of the iodine 3d, 4s, and 4p orbitals in methyl iodide. Journal of Chemical Physics, 2018, 149, 144302.	3.0	13
51	Resonant interatomic Coulombic decay in HeNe: Electron angular emission distributions. Physical Review A, 2018, 97, .	2.5	20
52	Neuronal dynamics on patterned substrates measured by fluorescence microscopy. MRS Communications, 2018, 8, 487-492.	1.8	2
53	Energy Transfer into Molecular Vibrations and Rotations by Recoil in Inner-Shell Photoemission. Physical Review Letters, 2018, 121, 073002.	7.8	17
54	Experimental setup for the study of resonant inelastic X-ray scattering of organometallic complexes in gas phase. Review of Scientific Instruments, 2018, 89, 063107.	1.3	3

#	Article	IF	Citations
55	Silk-ionomer and silk-tropoelastin hydrogels as charged three-dimensional culture platforms for the regulation of hMSC response. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 2549-2564.	2.7	6
56	New achievements on relaxation dynamics of atoms and molecules photoexcited in the tender x-ray domain at synchrotron SOLEIL. Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 042001.	1.5	8
57	Femtosecond response of polyatomic molecules to ultra-intense hard X-rays. Nature, 2017, 546, 129-132.	27.8	139
58	Potential Energy Surface Reconstruction and Lifetime Determination of Molecular Double-Core-Hole States in the Hard X-Ray Regime. Physical Review Letters, 2017, 119, 133001.	7.8	17
59	Cationic double K-hole pre-edge states of CS2 and SF6. Scientific Reports, 2017, 7, 13317.	3.3	19
60	Photoelectron recoil in CO in the x-ray region up to 7 keV. Physical Review A, 2017, 95, .	2.5	12
61	Detailed assignment of normal and resonant Auger spectra of Xe near the L edges. Physical Review A, 2017, 96, .	2.5	6
62	Experimental and theoretical study of the double-core-hole hypersatellite Auger spectrum of Ne. Physical Review A, $2017, 96, .$	2.5	15
63	Effect of Terminal Modification on the Molecular Assembly and Mechanical Properties of Proteinâ€Based Block Copolymers. Macromolecular Bioscience, 2017, 17, 1700095.	4.1	10
64	Photoionization and ionic dissociation of the C ₃ H ₃ NS molecule induced by soft Xâ€ray near the C1s edge. Journal of Mass Spectrometry, 2017, 52, 657-663.	1.6	6
65	Electronic-state–lifetime interference in the hard-x-ray regime: Argon as a showcase. Physical Review A, 2017, 95, .	2.5	9
66	X-ray versus Auger emission following Xe 1s photoionization. Physical Review A, 2017, 95, .	2.5	14
67	Spectral dependence of photoemission in multiphoton ionization of NO⟨sub⟩2⟨/sub⟩ by femtosecond pulses in the 375–430 nm range. Physical Chemistry Chemical Physics, 2017, 19, 21996-22007.	2.8	4
68	Different Time Scales in the Dissociation Dynamics of Core-Excited CF4 by Two Internal Clocks. Physical Review Letters, 2017, 119, 203203.	7.8	1
69	Coulomb-explosion imaging of concurrent <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="bold">CH</mml:mi><mml:mn>2</mml:mn></mml:msub><mml:mi mathvariant="bold">Brl</mml:mi></mml:mrow></mml:math> photodissociation dynamics. Physical	2.5	50
70	Subfemtosecond Control of Molecular Fragmentation by Hard X-Ray Photons. Physical Review Letters, 2017, 118, 213001.	7.8	25
71	Angular-momentum transfer due to postcollision interaction in atomic inner ns2 -shell photoionization. Physical Review A, 2017, 95, .	2.5	6
72	Interference effects in photoelectron asymmetry parameter (\hat{l}^2) trends of C 2sâ^'1states of ethyne, ethene and ethane. Journal of Physics B: Atomic, Molecular and Optical Physics, 2016, 49, 235102.	1.5	2

#	Article	IF	CITATIONS
73	Charge transfer in dissociating iodomethane and fluoromethane molecules ionized by intense femtosecond X-ray pulses. Structural Dynamics, 2016, 3, 043207.	2.3	59
74	Imaging the Temporal Evolution of Molecular Orbitals during Ultrafast Dissociation. Physical Review Letters, 2016, 117, 243002.	7.8	29
75	Structural and dynamical properties of chlorinated hydrocarbons studied with resonant inelastic x-ray scattering. Journal of Chemical Physics, 2016, 144, 134309.	3.0	9
76	Electronic state-lifetime interference in resonant Auger spectra: a tool to disentangle overlapping core-excited states. Physical Chemistry Chemical Physics, 2016, 18, 15133-15142.	2.8	20
77	Double-Core-Hole States in Neon: Lifetime, Post-Collision Interaction, and Spectral Assignment. Physical Review Letters, 2016, 117, 133001.	7.8	59
78	Photon-energy dependence of single-photon simultaneous core ionization and core excitation in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>CO</mml:mi><mml:mn>2<th>nn͡ᠫ∹⁵/mml</th><th>l:m<mark>3</mark>2b></th></mml:mn></mml:msub></mml:math>	nn͡ᠫ∹ ⁵ /mml	l:m <mark>3</mark> 2b>
79	Anomalously strong two-electron one-photon X-ray decay transitions in CO caused by avoided crossing. Scientific Reports, 2016, 6, 20947.	3.3	11
80	Two-to-one Auger decay of a double <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>L</mml:mi></mml:math> vacancy in argon. Physical Review A, 2016, 93, .	2.5	30
81	Coupled electron-nuclear dynamics in resonant <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mn>1</mml:mn><mml:mi>if<th>ni>2.a5nml:n</th><th>no1→</th></mml:mi></mml:mrow></mml:math>	ni>2.a5nml:n	no 1→
82	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi mathvariant="italic">KLLAuger spectrum of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">H<mml:mn>2</mml:mn></mml:mi </mml:msub><mml:mi< th=""><th>2.5</th><th>11</th></mml:mi<></mml:mrow></mml:math </mml:mi 	2.5	11
83	mathvariant="normal">S. Physical Review A, 2016, 93, . Hard-X-Ray-Induced Multistep Ultrafast Dissociation. Physical Review Letters, 2016, 116, 213001.	7.8	36
84	Load Rate and Temperature Dependent Mechanical Properties of the Cortical Neuron and Its Pericellular Layer Measured by Atomic Force Microscopy. Langmuir, 2016, 32, 1111-1119.	3.5	31
85	Hard-X-ray Photoelectron Spectroscopy of Atoms and Molecules. Springer Series in Surface Sciences, 2016, , 65-110.	0.3	5
86	Toward unifying chemical function with molecular structure using strong fields, x-rays, and electrons. , $2016, , .$		0
87	Postcollision interaction effects inKLLAuger spectra following argon1sphotoionization. Physical Review A, 2015, 92, .	2.5	37
88	Auger resonant-Raman decay after XeL-edge photoexcitation. Physical Review A, 2015, 92, .	2.5	12
89	Electron Dynamics in the Core-Excited <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>CS</mml:mi></mml:mrow><mml:mrow><mm .<="" 2015,="" 5,="" inelastic="" physical="" resonant="" revealed="" review="" scattering="" spectroscopy.="" th="" through="" x,="" x-ray=""><th>nl:nsn⊛2<th>mm15mn></th></th></mm></mml:mrow></mml:msub></mml:mrow></mml:math>	nl:n s n⊛2 <th>mm15mn></th>	mm 15 mn>
90	Time-resolved study of ICD in Ne dimers using FEL radiation. Journal of Electron Spectroscopy and Related Phenomena, 2015, 204, 245-256.	1.7	14

#	Article	IF	Citations
91	Photo-induced ultrafast dissociation following deep-core-electron excitation. Journal of Physics: Conference Series, 2015, 635, 112024.	0.4	0
92	Resonant X-ray Scattering of carbonyl sulfide at the sulfur K edge. Journal of Physics: Conference Series, 2015, 635, 112109.	0.4	0
93	Electron dynamics in the core-excited CS ₂ molecule revealed through resonant inelastic x-ray scattering spectroscopy. Journal of Physics: Conference Series, 2015, 635, 112012.	0.4	2
94	Ultrafast Dynamics And Electronic State – Lifetime Interferences In Chlorine-Containing Molecules. Journal of Physics: Conference Series, 2015, 635, 112092.	0.4	0
95	Selecting core-hole localization or delocalization in CS2 by photofragmentation dynamics. Nature Communications, 2015, 6, 6166.	12.8	59
96	Direct Observation of Double-Core-Hole Shake-Up States in Photoemission. Physical Review Letters, 2015, 114, 093001.	7.8	41
97	Probing keto–enol tautomerism using photoelectron spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 19991-19996.	2.8	5
98	Auger resonant-Raman study at the Ar <i>K</i> edge as probe of electronic-state-lifetime interferences. Physical Review A, 2015, 91, .	2.5	18
99	The GALAXIES beamline at the SOLEIL synchrotron: inelastic X-ray scattering and photoelectron spectroscopy in the hard X-ray range. Journal of Synchrotron Radiation, 2015, 22, 175-179.	2.4	127
100	Resonant inelastic X-ray spectroscopy of atoms and simple molecules: Satellite features and dependence on energy detuning and photon polarization. Journal of Electron Spectroscopy and Related Phenomena, 2015, 204, 356-364.	1.7	8
101	Double core-hole states in SiX4 (X = F, Cl, Br, and CH3) molecules derived by photoelectron and KLL Auger spectroscopy. Journal of Physics: Conference Series, 2015, 635, 112057.	0.4	0
102	Core-hole-clock spectroscopies in the tender x-ray domain. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 124031.	1.5	29
103	Resonant inelastic x-ray scattering on iso-C2H2Cl2 around the chlorine K-edge: Structural and dynamical aspects. Journal of Chemical Physics, 2014, 141, 144301.	3.0	5
104	Effect of sequence features on assembly of spider silk block copolymers. Journal of Structural Biology, 2014, 186, 412-419.	2.8	27
105	Resonant Auger decay driving intermolecular Coulombic decay in molecular dimers. Nature, 2014, 505, 664-666.	27.8	119
106	High Resolution Multiphoton Spectroscopy by a Tunable Free-Electron-Laser Light. Physical Review Letters, 2014, 113, 193201.	7.8	31
107	Atomic Auger Doppler effects upon emission of fast photoelectrons. Nature Communications, 2014, 5, 4069.	12.8	44
108	Experimental Proof of Resonant Auger Decay Driven Intermolecular Coulombic Decay. Journal of Physics: Conference Series, 2014, 488, 022009.	0.4	1

#	Article	IF	Citations
109	Imaging charge transfer in iodomethane upon x-ray photoabsorption. Science, 2014, 345, 288-291.	12.6	183
110	VUV photodissociation of thiazole molecule investigated by TOF-MS and photoelectron photoion coincidence spectroscopy. Journal of Mass Spectrometry, 2014, 49, 1163-1170.	1.6	9
111	The benefit of the European User Community from transnational access to national radiation facilities. Journal of Synchrotron Radiation, 2014, 21, 638-639.	2.4	2
112	Hard X-ray photoelectron spectroscopy on the GALAXIES beamline at the SOLEIL synchrotron. Journal of Electron Spectroscopy and Related Phenomena, 2013, 190, 188-192.	1.7	94
113	A review of molecular effects in gas-phase KL X-ray emission. Journal of Electron Spectroscopy and Related Phenomena, 2013, 188, 53-61.	1.7	10
114	Progress in resonant inelastic X-ray scattering. Journal of Electron Spectroscopy and Related Phenomena, 2013, 188, 1-2.	1.7	14
115	Experimental and theoretical study of X-ray absorption around the chlorine L edge in vinyl chloride. Journal of Electron Spectroscopy and Related Phenomena, 2013, 186, 1-7.	1.7	5
116	Resonance-enhanced multiple ionization of krypton at an x-ray free-electron laser. Physical Review A, $2013, 87, .$	2.5	57
117	Ultrafast Charge Rearrangement and Nuclear Dynamics upon Inner-Shell Multiple Ionization of Small Polyatomic Molecules. Physical Review Letters, 2013, 110, 053003.	7.8	98
118	Ultrafast dynamics in C 1s core-excited CF4 revealed by two-dimensional resonant Auger spectroscopy. Journal of Chemical Physics, 2013, 138, 234305.	3.0	5
119	Dissociation of chloromethanes upon resonant if^* excitation studied by x-ray scattering. Journal of Chemical Physics, 2013, 139, 134302.	3.0	19
120	From double-slit interference to structural information in simple hydrocarbons. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15201-15206.	7.1	57
121	Inner-shell multiple ionization of polyatomic molecules with an intense x-ray free-electron laser studied by coincident ion momentum imaging. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 164031.	1.5	27
122	Post-collision interaction manifestation in molecular systems probed by photoelectron-molecular ion coincidences. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 215101.	1.5	9
123	Time-Resolved Measurement of Interatomic Coulombic Decay in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>Ne</mml:mi><mml:mn>2</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2013, 111, 093402.	7.8	117
124	Double momentum spectrometer for ion-electron vector correlations in dissociative photoionization. Review of Scientific Instruments, 2013, 84, 103104.	1.3	18
125	Molecular-frame photoelectron angular distribution imaging studies of OCS S1s photoionization. Journal of Physics B: Atomic, Molecular and Optical Physics, 2012, 45, 194005.	1.5	11
126	Resonant inelastic x-ray scattering of methyl chloride at the chlorine K edge. Journal of Chemical Physics, 2012, 136, 024319.	3.0	18

#	Article	IF	Citations
127	Thomson-resonant interference effects in elastic x-ray scattering near the Cl K edge of HCl. Journal of Chemical Physics, 2012, 137, 094311.	3.0	4
128	Angular and dynamical properties in resonant inelastic x-ray scattering: Case study of chlorine-containing molecules. Physical Review A, 2012, 86, .	2.5	13
129	Multiphoton Ionization of Xenon at the LCLS Free-Electron Laser. Journal of Physics: Conference Series, 2012, 388, 022022.	0.4	0
130	Double Auger Emission of fixed-in-space Carbon Monoxide following Core-Excitation and Ionization. Journal of Physics: Conference Series, 2012, 388, 022066.	0.4	0
131	Ultra-efficient ionization of heavy atoms by intense X-ray free-electron laser pulses. Nature Photonics, 2012, 6, 858-865.	31.4	218
132	A new method to derive electronegativity from resonant inelastic x-ray scattering. Journal of Chemical Physics, 2012, 137, 144303.	3.0	23
133	Site-selective resonant Auger spectroscopy of iso-dichloroethylene at the carbon K-edge. Journal of Electron Spectroscopy and Related Phenomena, 2012, 185, 252-258.	1.7	2
134	Ultrafast Dynamics in Postcollision Interaction after Multiple Auger Decays in Argon <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1</mml:mn><mml:mi>s</mml:mi></mml:math> Photoionization. Physical Review Letters, 2012, 109, 013001.	7.8	39
135	Complex decay patterns in atomic core photoionization disentangled by ion-recoil measurements. Physical Review A, 2011, 84, .	2.5	21
136	Resonant inelastic x-ray scattering at the limit of subfemtosecond natural lifetime. Journal of Chemical Physics, 2011, 134, 144308.	3.0	30
137	Doppler effect in fragment autoionization following core-to-valence excitation in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi mathvariant="normal">O</mml:mi><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msub></mml:mrow> Physical Review A, 2010, 82, .</mml:math>	v> ^{2.5} mml:r	nath>.
138	Present trends and future perspectives for atomic and molecular physics at the new X-ray light sources. Journal of Electron Spectroscopy and Related Phenomena, 2010, 181, 98-110.	1.7	16
139	Resonant X-ray Raman scattering on molecules: A benchmark study on HCl. Journal of Electron Spectroscopy and Related Phenomena, 2010, 181, 116-120.	1.7	2
140	Two-photon-induced x-ray emission in neon atoms. Physical Review A, 2010, 82, .	2.5	6
141	Electronic State Interferences in Resonant X-Ray Emission afterK-Shell Excitation in HCl. Physical Review Letters, 2010, 105, 113004.	7.8	41
142	Performances of a bent-crystal spectrometer adapted to resonant x-ray emission measurements on gas-phase samples. Review of Scientific Instruments, 2009, 80, 093105.	1.3	20
143	Experimental and theoretical investigation of molecular field effects by polarization-resolved resonant inelastic x-ray scattering. Physical Review A, 2009, 80, .	2.5	22
144	Advances in X-Ray and Inner Shell Processes. European Physical Journal: Special Topics, 2009, 169, 1-3.	2.6	0

#	Article	IF	Citations
145	Recoil frame photoemission in inner-shell photoionization of small polyatomic molecules. European Physical Journal: Special Topics, 2009, 169, 85-93.	2.6	3
146	Linear dichroism in molecular resonant inelastic x-ray scattering. Journal of Physics: Conference Series, 2009, 194, 022013.	0.4	0
147	Multipathway dissociation dynamics of core-excited methyl chloride probed by high resolution electron spectroscopy and Auger-electron–ion coincidences. Journal of Chemical Physics, 2008, 128, 154314.	3.0	26
148	Linear Dichroism in Resonant Inelastic X-Ray Scattering to Molecular Spin-Orbit States. Physical Review Letters, 2008, 101, 133003.	7.8	26
149	Resonant double Auger decay in carbon <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi mathvariant="italic">K</mml:mi></mml:math> -shell excitation of CO. Physical Review A, 2008, 77, .	2.5	34
150	H2S ultrafast dissociation probed by energy-selected resonant Auger electron–ion coincidence measurements. Journal of Chemical Physics, 2007, 127, 114315.	3.0	11
151	Photoemission in the NO molecular frame induced by soft-x-ray elliptically polarized light above the N(1s) \hat{a} and O(1s) \hat{a} lionization thresholds. Physical Review A, 2007, 75, .	2.5	20
152	Site selective dissociation upon core ionization of ozone. Chemical Physics Letters, 2007, 435, 214-218.	2.6	22
153	K–L resonant X-ray Raman scattering as a tool for potential energy surface mapping. Chemical Physics Letters, 2007, 439, 402-406.	2.6	17
154	Elastic peak of K shell excited HCl molecule: Comparison HClâ€"DClâ€"Experiment and theory. Journal of Electron Spectroscopy and Related Phenomena, 2007, 155, 91-94.	1.7	5
155	Photoemission in the molecular frame induced by soft X-ray elliptically polarized light. Journal of Electron Spectroscopy and Related Phenomena, 2007, 156-158, 30-37.	1.7	8
156	Charge transfer in high velocity Cn++ He collisions. Journal of Physics B: Atomic, Molecular and Optical Physics, 2006, 39, 2593-2603.	1.5	13
157	Femtosecond nuclear motion of HClprobed by resonant x-ray Raman scattering in the Cl1sregion. Physical Review A, 2006, 73, .	2.5	63
158	Influence of formation path on the CH2BrCl2+ dissociation dynamics. Journal of Chemical Physics, 2005, 123, 084302.	3.0	17
159	Photofragmentation study of hexamethyldisiloxane following core ionization and direct double ionization. Journal of Chemical Physics, 2005, 123, 234303.	3.0	14
160	High spatial resolution two-dimensional position sensitive detector for the performance of coincidence experiments. Review of Scientific Instruments, 2005, 76, 043302.	1.3	21
161	Auger electron–ion coincidence studies to probe molecular dynamics. Journal of Electron Spectroscopy and Related Phenomena, 2004, 141, 171-181.	1.7	39
162	Relaxation Dynamics of Core Excited Molecules Probed by Auger-Electron—Ion Coincidences. Springer Series on Atomic, Optical, and Plasma Physics, 2003, , 283-301.	0.2	0

#	Article	IF	Citations
163	Nondipolar Electron Angular Distributions from Fixed-in-Space Molecules. Physical Review Letters, 2002, 89, 033002.	7.8	24
164	Development of a four-element conical electron lens dedicated to high resolution Auger electron–ion(s) coincidence experiments. Review of Scientific Instruments, 2002, 73, 3885-3894.	1.3	33
165	Mapping potential energy surfaces by core electron excitation: the resonant Auger decay spectrum of BF3. Chemical Physics Letters, 2002, 359, 48-54.	2.6	26
166	Dynamical Angular Correlation in Molecular Auger Decay Physical Review Letters, 2001, 87, 203001.	7.8	33
167	Nuclear motion driven by the Renner–Teller effect as observed in the resonant Auger decay to the X̃2Πelectronic ground state of N2O+. Journal of Chemical Physics, 2001, 115, 864-869.	3.0	31
168	H2+formation from H2O+mediated by the core-excitation-induced nuclear motion in H2O. Physical Review A, 2001, 63, .	2.5	43
169	Angular distribution measurements for spin-orbit-state-resolved S2pphotoelectrons of SF6 in the shape-resonance region. Physical Review A, 2001, 63, .	2.5	9
170	High-resolution angle-resolved ion-yield measurements of H2O and D2O in the region of O 1s to Rydberg transitions. Chemical Physics Letters, 2000, 326, 314-320.	2.6	29
171	Dynamical effects and selective fragmentation after inner shell excitation. , 2000, , .		0
172	Role of bending in the dissociation of selective resonant inner-shell excitation as observed inCO2. Physical Review A, 2000, 61, .	2.5	63
173	New setup for angular distribution measurements of Auger electrons from fixed in space molecules. Review of Scientific Instruments, 2000, 71, 4387.	1.3	27
174	Molecular deformation in the O1sâ^'12Ï€uexcited states of CO2 probed by the triple-differential measurement of fragment ions. Physical Review A, 2000, 62, .	2.5	35
175	Multi-ion coincidence measurements of methyl chloride following photofragmentation near the chlorine K-edge. Journal of Physics B: Atomic, Molecular and Optical Physics, 1999, 32, 2629-2647.	1.5	13
176	Correlation between Nuclear Motion in the Core-ExcitedCF4Molecule and Molecular Dissociation after Resonant Auger Decay. Physical Review Letters, 1999, 83, 3800-3803.	7.8	65
177	Resonant Auger spectroscopy on SiF4 and SiCl4 molecules excited around the silicon 2p edge. Journal of Electron Spectroscopy and Related Phenomena, 1998, 93, 95-103.	1.7	24
178	Electron-ion spectroscopy: a probe of molecular dynamics. Journal of Electron Spectroscopy and Related Phenomena, 1998, 93, 49-60.	1.7	32
179	Site-Selective Photochemistry of Core Excited Molecules: Role of the Internal Energy. Physical Review Letters, 1998, 81, 4104-4107.	7.8	78
180	Photofragmentation of third-row hydrides following photoexcitation at deep-core levels. Physical Review A, 1998, 58, 3757-3765.	2.5	22

#	Article	IF	CITATIONS
181	Postcollision-interaction effects in HCl following photofragmentation near the chlorineKedge. Physical Review A, 1998, 57, R4090-R4093.	2.5	15
182	Neutral dissociation of hydrogen following photoexcitation of HCl at the chlorineKedge. Physical Review A, 1998, 57, 2608-2611.	2.5	27
183	Double photoionization of below the double ionization potential. Journal of Physics B: Atomic, Molecular and Optical Physics, 1997, 30, 2177-2186.	1.5	27
184	Observation of Site-Specific Electron Emission in the Decay of SuperexcitedO2. Physical Review Letters, 1997, 79, 4554-4557.	7.8	77
185	Nuclear Motion of Core ExcitedBF3Probed by High Resolution Resonant Auger Spectroscopy. Physical Review Letters, 1997, 79, 3857-3860.	7.8	55
186	New high luminosity "double toroidal―electron spectrometer. Review of Scientific Instruments, 1997, 68, 3728-3737.	1.3	69
187	Site Selective Fragmentation with Soft X-rays: From Gaseous Polyatomic Molecules, Free Clusters, Polymers, Adsorbates to Biological Macromolecules. Zeitschrift Fur Physikalische Chemie, 1996, 195, 43-63.	2.8	28
188	Multicoincidence mass spectrometry of core excited molecules. Journal of Electron Spectroscopy and Related Phenomena, 1996, 79, 401-406.	1.7	20
189	Scientific Instruments, 1996, 67, 358-364.	1.3	18
190	Dissociation dynamics of core-excited BF3 probed by the photoelectronâ€"photoionâ€"photoion coincidence. Chemical Physics Letters, 1995, 238, 42-46.	2.6	41
191	Fluorescenceâ€photoionâ€coincidence spectroscopy on ICN core excited molecules. Review of Scientific Instruments, 1995, 66, 1554-1557.	1.3	6
192	Photofragmentation of the Core-Excited s-Tetrazine Molecule Near the Carbon and Nitrogen K Edges. The Journal of Physical Chemistry, 1995, 99, 1733-1740.	2.9	10
193	New experimental setup devoted to the Auger electron–ion coincidence spectroscopy. Review of Scientific Instruments, 1995, 66, 1587-1588.	1.3	16
194	Fragmentation of methyl chloride photoexcited near Cl (2p) by mass spectrometry. Journal of Chemical Physics, 1994, 101, 7548-7553.	3.0	43
195	Siteâ€selective fragmentation in coreâ€excited bromoâ€chloroâ€alkanes [Br(CH2)nCl]. Journal of Chemical Physics, 1994, 101, 3742-3749.	3.0	39
196	Fluorescence-photoion-coincidence spectroscopy on inner shell excited molecules. Chemical Physics, 1994, 187, 143-152.	1.9	11
197	Multicoincidence mass spectrometry applied to hexamethyldisilane excited around the silicon 2p edge. The Journal of Physical Chemistry, 1993, 97, 5228-5237.	2.9	87
198	Dissociation dynamics of core excited N2O. Journal of Chemical Physics, 1993, 98, 2534-2540.	3.0	75

#	Article	IF	CITATIONS
199	Dissociation of core excited polyatomic molecules: Sequential or concerted processes?. AIP Conference Proceedings, 1993, , .	0.4	5
200	A photoelectron-ion multiple coincidence technique applied to core ionization of molecules. Nuclear Instruments & Methods in Physics Research B, 1991, 62, 167-174.	1.4	73
201	Charge separation in core excited argon clusters. Journal of Chemical Physics, 1991, 95, 6544-6550.	3.0	54
202	Photodissociation of core excited molecules. Journal of Electron Spectroscopy and Related Phenomena, 1990, 52, 623-648.	1.7	38
203	Ionic fragmentation ofK-shell excited and ionized CO. Physical Review A, 1988, 37, 2448-2466.	2.5	95
204	Formation and relaxation of K $<$ sup $>-2<$ /sup $>$ and K $<$ sup $>-2<$ /sup $>$ V double-core-hole states in $<$ i>>n $<$ /i>>-butane. Journal of Chemical Physics, 0, , .	3.0	1