List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/360464/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bifurcation and spatiotemporal patterns in a homogeneous diffusive predator–prey system. Journal of Differential Equations, 2009, 246, 1944-1977.	2.2	419
2	Stability and bifurcation in a neural network model with two delays. Physica D: Nonlinear Phenomena, 1999, 130, 255-272.	2.8	334
3	Predator–prey system with strong Allee effect in prey. Journal of Mathematical Biology, 2011, 62, 291-331.	1.9	241
4	Stability and Hopf bifurcation analysis on a simplified BAM neural network with delays. Physica D: Nonlinear Phenomena, 2005, 200, 185-204.	2.8	217
5	Dynamics and pattern formation in a diffusive predator–prey system with strong Allee effect in prey. Journal of Differential Equations, 2011, 251, 1276-1304.	2.2	191
6	Bifurcation analysis for Chen's system with delayed feedback and its application to control of chaosâ~†. Chaos, Solitons and Fractals, 2004, 22, 75-91.	5.1	174
7	Local Hopf bifurcation and global periodic solutions in a delayed predator–prey system. Journal of Mathematical Analysis and Applications, 2005, 301, 1-21.	1.0	170
8	Hopf bifurcations in a reaction–diffusion population model with delay effect. Journal of Differential Equations, 2009, 247, 1156-1184.	2.2	152
9	Diffusion-driven instability and bifurcation in the Lengyel–Epstein system. Nonlinear Analysis: Real World Applications, 2008, 9, 1038-1051.	1.7	129
10	Global stability of multi-group SEIR epidemic models with distributed delays and nonlinear transmission. Nonlinear Analysis: Real World Applications, 2012, 13, 1581-1592.	1.7	127
11	Hopf bifurcation analysis in a delayed Nicholson blowflies equation. Nonlinear Analysis: Theory, Methods & Applications, 2005, 60, 1351-1367.	1.1	113
12	On the zeros of a fourth degree exponential polynomial with applications to a neural network model with delays. Chaos, Solitons and Fractals, 2005, 26, 519-526.	5.1	109
13	Global existence of periodic solutions in a tri-neuron network model with delays. Physica D: Nonlinear Phenomena, 2004, 198, 106-119.	2.8	91
14	Periodic solutions of planar systems with two delays. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 1999, 129, 1017-1032.	1.2	85
15	Global bifurcation analysis and pattern formation in homogeneous diffusive predator–prey systems. Journal of Differential Equations, 2016, 260, 3495-3523.	2.2	83
16	Stability and Hopf bifurcation in a diffusive predator–prey system with delay effect. Nonlinear Analysis: Real World Applications, 2011, 12, 1998-2011.	1.7	79
17	QUALITATIVE ANALYSIS OF A NEURAL NETWORK MODEL WITH MULTIPLE TIME DELAYS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1999, 09, 1585-1595.	1.7	75
18	Hopf bifurcation in a delayed reaction–diffusion–advection population model. Journal of Differential Equations, 2018, 264, 5333-5359.	2.2	65

#	Article	IF	CITATIONS
19	Stability and Bifurcation in Delay–Differential Equations with Two Delays. Journal of Mathematical Analysis and Applications, 1999, 236, 254-280.	1.0	62
20	Bifurcation analysis in a time-delay model for prey–predator growth with stage-structure. Nonlinear Dynamics, 2007, 49, 285-294.	5.2	62
21	Time Delay-Induced Instabilities and Hopf Bifurcations in General Reaction–Diffusion Systems. Journal of Nonlinear Science, 2013, 23, 1-38.	2.1	61
22	GLOBAL STABILITY AND HOPF BIFURCATION IN A DELAYED DIFFUSIVE LESLIE–GOWER PREDATOR–PREY SYSTEM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250061.	1.7	60
23	Bifurcation analysis in a scalar delay differential equation. Nonlinearity, 2007, 20, 2483-2498.	1.4	58
24	Stability and Hopf bifurcation analysis of a prey–predator system with two delays. Chaos, Solitons and Fractals, 2009, 42, 2606-2613.	5.1	54
25	Hopf Bifurcation in a Diffusive Logistic Equation with Mixed Delayed and Instantaneous Density Dependence. Journal of Dynamics and Differential Equations, 2012, 24, 897-925.	1.9	54
26	Stability and bifurcation analysis in Van der Pol's oscillator with delayed feedback. Journal of Sound and Vibration, 2005, 283, 801-819.	3.9	50
27	Synchronized Hopf bifurcation analysis in a neural network model with delays. Journal of Mathematical Analysis and Applications, 2005, 312, 205-229.	1.0	49
28	Hopf-Hopf bifurcation and chaotic attractors in a delayed diffusive predator-prey model with fear effect. Chaos, Solitons and Fractals, 2019, 123, 206-216.	5.1	49
29	Bifurcation analysis in van der Pol's oscillator with delayed feedback. Journal of Computational and Applied Mathematics, 2008, 213, 604-615.	2.0	48
30	Stability and bifurcation analysis in a delayed SIR model. Chaos, Solitons and Fractals, 2008, 35, 609-619.	5.1	47
31	Bifurcation analysis in a delayed diffusive Nicholson's blowflies equation. Nonlinear Analysis: Real World Applications, 2010, 11, 1692-1703.	1.7	45
32	Bifurcations of patterned solutions in the diffusive Lengyel-Epstein system of Cima chemical reactions. Rocky Mountain Journal of Mathematics, 2013, 43, .	0.4	44
33	LOCAL AND GLOBAL HOPF BIFURCATION IN A DELAYED HEMATOPOIESIS MODEL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2004, 14, 3909-3919.	1.7	42
34	Stability and bifurcation in a two harmful phytoplankton–zooplankton system. Chaos, Solitons and Fractals, 2009, 39, 1395-1409.	5.1	42
35	Bifurcation analysis of a class of neural networks with delays. Nonlinear Analysis: Real World Applications, 2008, 9, 2234-2252.	1.7	41
36	Dynamics in a diffusive plankton system with delay and toxic substances effect. Nonlinear Analysis: Real World Applications, 2015, 22, 66-83.	1.7	41

#	Article	IF	CITATIONS
37	Stability and bifurcation analysis in a kind of business cycle model with delayâ~†. Chaos, Solitons and Fractals, 2004, 22, 883-896.	5.1	40
38	Market stability switches in a continuous-time financial market with heterogeneous beliefs. Economic Modelling, 2009, 26, 1432-1442.	3.8	40
39	Hopf bifurcation analysis in a tri-neuron network with time delay. Nonlinear Analysis: Real World Applications, 2008, 9, 9-25.	1.7	39
40	Spreading speeds and travelling waves for non-monotone time-delayed lattice equations. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010, 466, 1919-1934.	2.1	37
41	Dynamics in a diffusive predator–prey system with strong Allee effect and Ivlev-type functional response. Journal of Mathematical Analysis and Applications, 2015, 422, 1447-1462.	1.0	37
42	Global Hopf bifurcation and permanence of a delayed SEIRS epidemic model. Mathematics and Computers in Simulation, 2016, 122, 35-54.	4.4	37
43	Stability Switches and Hopf Bifurcations in a Pair of Delay-Coupled Oscillators. Journal of Nonlinear Science, 2007, 17, 145-166.	2.1	36
44	Bifurcation analysis of a population model and the resulting SIS epidemic model with delay. Journal of Computational and Applied Mathematics, 2006, 197, 169-187.	2.0	35
45	Spatiotemporal pattern formation and multiple bifurcations in a diffusive bimolecular model. Nonlinear Analysis: Real World Applications, 2010, 11, 3770-3781.	1.7	33
46	The effect of delay on a diffusive predator-prey system with Holling Type-II predator functional response. Communications on Pure and Applied Analysis, 2012, 12, 481-501.	0.8	32
47	Hopf bifurcation analysis in a one-dimensional Schnakenberg reaction–diffusion model. Nonlinear Analysis: Real World Applications, 2012, 13, 1961-1977.	1.7	32
48	Stationary patterns of a diffusive predator–prey model with Crowley–Martin functional response. Nonlinear Analysis: Real World Applications, 2018, 39, 33-57.	1.7	32
49	Bifurcation analysis in a predator–prey system with stage-structure and harvesting. Journal of the Franklin Institute, 2010, 347, 1097-1113.	3.4	30
50	Stability and bifurcation analysis of a diffusive prey–predator system in Holling type III with a prey refuge. Nonlinear Dynamics, 2015, 79, 631-646.	5.2	30
51	Two delays induce Hopf bifurcation and double Hopf bifurcation in a diffusive Leslie-Gower predator-prey system. Chaos, 2019, 29, 013101.	2.5	30
52	Double Hopf Bifurcation in Delayed reaction–diffusion Systems. Journal of Dynamics and Differential Equations, 2020, 32, 313-358.	1.9	30
53	HOPF BIFURCATION ANALYSIS IN A MACKEY–GLASS SYSTEM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 2149-2157.	1.7	28
54	MULTIPLE BIFURCATION ANALYSIS AND SPATIOTEMPORAL PATTERNS IN A 1-D GIERER–MEINHARDT MODEL OF MORPHOGENESIS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 1007-1025.	1.7	28

#	Article	IF	CITATIONS
55	Normal forms for NFDEs with parameters andÂapplication to the lossless transmission line. Nonlinear Dynamics, 2008, 52, 199-206.	5.2	27
56	Stability and bifurcation of mutual system with time delay. Chaos, Solitons and Fractals, 2004, 21, 729-740.	5.1	26
57	Bifurcation Analysis for a Delayed Diffusive Logistic Population Model in the Advective Heterogeneous Environment. Journal of Dynamics and Differential Equations, 2020, 32, 823-847.	1.9	26
58	Bifurcation analysis in the diffusive Lotka–Volterra system: An application to market economy. Chaos, Solitons and Fractals, 2009, 40, 902-911.	5.1	25
59	Bifurcation analysis of the Gierer–Meinhardt system with a saturation in the activator production. Applicable Analysis, 2014, 93, 1115-1134.	1.3	25
60	Hopf bifurcation analysis in synaptically coupled HR neurons with two time delays. Nonlinear Dynamics, 2010, 62, 305-319.	5.2	24
61	Hopf bifurcation analysis in a model of oscillatory gene expression with delay. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2009, 139, 879-895.	1.2	23
62	A note on Hopf bifurcations in a delayed diffusive Lotka–Volterra predator–prey system. Computers and Mathematics With Applications, 2011, 62, 2240-2245.	2.7	23
63	Stability and Hopf bifurcation in a diffusivepredator-prey system incorporating a prey refuge. Mathematical Biosciences and Engineering, 2013, 10, 979-996.	1.9	23
64	Bifurcation analysis in a limit cycle oscillator with delayed feedback. Chaos, Solitons and Fractals, 2005, 23, 817-831.	5.1	22
65	Bifurcation analysis of Mackey–Glass electronic circuits model with delayed feedback. Nonlinear Dynamics, 2009, 57, 85-96.	5.2	21
66	Stability and bifurcation analysis in hematopoietic stem cell dynamics with multiple delays. Physica D: Nonlinear Phenomena, 2010, 239, 2011-2024.	2.8	21
67	Hopf bifurcation for neutral functional differential equations. Nonlinear Analysis: Real World Applications, 2010, 11, 1269-1277.	1.7	20
68	MULTIPLE BIFURCATION ANALYSIS IN A NEURAL NETWORK MODEL WITH DELAYS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2006, 16, 2903-2913.	1.7	19
69	Bifurcation analysis on a survival red blood cells model. Journal of Mathematical Analysis and Applications, 2006, 316, 459-471.	1.0	18
70	Bifurcation analysis of a spruce budworm model with diffusion and physiological structures. Journal of Differential Equations, 2017, 262, 5206-5230.	2.2	18
71	Bifurcation analysis of discrete survival red blood cells model. Communications in Nonlinear Science and Numerical Simulation, 2009, 14, 3358-3368.	3.3	17
72	Stability and bifurcation analysis in the cross-coupled laser model with delay. Nonlinear Dynamics, 2011, 66, 29-38.	5.2	17

#	Article	IF	CITATIONS
73	Stability and bifurcation analysis in an amplitude equation with delayed feedback. Chaos, Solitons and Fractals, 2008, 37, 1362-1371.	5.1	16
74	Hopf bifurcation analysis of a food-limited population model with delay. Nonlinear Analysis: Real World Applications, 2010, 11, 1087-1095.	1.7	16
75	Bifurcation analysis in a discrete BAM network model with delays. Journal of Difference Equations and Applications, 2011, 17, 69-84.	1.1	16
76	Diffusion-driven stability and bifurcation in a predator–prey system with <i>lvlev-type functional response</i> . Applicable Analysis, 2013, 92, 752-775.	1.3	16
77	Minimal Model of Plankton Systems Revisited with Spatial Diffusion and Maturation Delay. Bulletin of Mathematical Biology, 2016, 78, 381-412.	1.9	16
78	Singularity Analysis on a Planar System with Multiple Delays. Journal of Dynamics and Differential Equations, 2007, 19, 437-456.	1.9	13
79	Bifurcation analysis in an age-structured model of a single species living in two identical patches. Applied Mathematical Modelling, 2010, 34, 1068-1077.	4.2	13
80	Bifurcation analysis in a diffusive â€~food-limited' model with time delay. Applicable Analysis, 2010, 89, 1161-1181.	1.3	13
81	STABILITY AND BIFURCATION ANALYSIS IN A DIFFUSIVE BRUSSELATOR SYSTEM WITH DELAYED FEEDBACK CONTROL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1250037.	1.7	13
82	Bifurcation analysis of a delayed predator–prey system with strong Allee effect and diffusion. Applicable Analysis, 2012, 91, 1219-1241.	1.3	13
83	Bifurcation analysis of a diffusive predator–prey system with nonconstant death rate and Holling III functional response. Chaos, Solitons and Fractals, 2015, 70, 1-13.	5.1	13
84	Bifurcation Analysis in a Diffusive Mussel-Algae Model with Delay. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1950144.	1.7	13
85	Spatiotemporal Patterns in a Delayed Reaction–Diffusion Mussel–Algae Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1950164.	1.7	13
86	STABILITY AND BIFURCATION ANALYSIS ON A DELAYED NEURAL NETWORK MODEL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 2883-2893.	1.7	12
87	The Effect of Delay on A Diffusive Predator–Prey System with Modified Leslie–Gower Functional Response. Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40, 51-73.	0.9	12
88	Turing instability and bifurcation analysis in a diffusive bimolecular system with delayed feedback. Communications in Nonlinear Science and Numerical Simulation, 2017, 50, 241-255.	3.3	12
89	Stability and bifurcation analysis in a basic model of the immune response with delays. Chaos, Solitons and Fractals, 2009, 41, 1223-1234.	5.1	11
90	Global behaviour of a delayed viral kinetic model with general incidence rate. Discrete and Continuous Dynamical Systems - Series B, 2015, 20, 1573-1582.	0.9	11

#	Article	IF	CITATIONS
91	Persistence, Turing Instability and Hopf Bifurcation in a Diffusive Plankton System with Delay and Quadratic Closure. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2016, 26, 1650047.	1.7	11
92	Stationary Pattern of a Reaction–Diffusion Mussel–Algae Model. Bulletin of Mathematical Biology, 2020, 82, 51.	1.9	11
93	Bifurcation analysis on a discrete model of Nicholson's blowflies. Journal of Difference Equations and Applications, 2008, 14, 737-746.	1.1	10
94	Analyzing global stability of a viral model with general incidence rate and cytotoxic T lymphocytes immune response. Nonlinear Dynamics, 2015, 82, 713-722.	5.2	10
95	Spatial Nonhomogeneous Periodic Solutions Induced by Nonlocal Prey Competition in a Diffusive Predator–Prey Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1950043.	1.7	10
96	Bifurcation analysis in a neutral differential equation. Journal of Mathematical Analysis and Applications, 2011, 378, 387-402.	1.0	9
97	Dynamical analysis for a model of asset prices with two delays. Physica A: Statistical Mechanics and Its Applications, 2016, 447, 297-313.	2.6	9
98	Seasonal Influence on Age-Structured Invasive Species with Yearly Generation. SIAM Journal on Applied Mathematics, 2018, 78, 1842-1862.	1.8	9
99	Stability analysis in a first-order complex differential equations with delayâ [~] †. Nonlinear Analysis: Theory, Methods & Applications, 2004, 59, 657-671.	1.1	8
100	Bifurcation analysis in an approachable haematopoietic stem cells model. Journal of Mathematical Analysis and Applications, 2008, 345, 276-285.	1.0	7
101	HOPF BIFURCATION ANALYSIS OF DIFFUSIVE BASS MODEL WITH DELAY UNDER "NEGATIVE-WORD-OF-MOUTH". International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2009, 19, 1059-1067.	1.7	7
102	Global Hopf Bifurcation Analysis for a Time-Delayed Model of Asset Prices. Discrete Dynamics in Nature and Society, 2010, 2010, 1-17.	0.9	7
103	GLOBAL DYNAMICS OF A CHOLERA MODEL WITH TIME DELAY. International Journal of Biomathematics, 2013, 06, 1250070.	2.9	7
104	Global Hopf Bifurcation Analysis of a Nicholson's Blowflies Equation of Neutral Type. Journal of Dynamics and Differential Equations, 2014, 26, 165-179.	1.9	7
105	Local and global Hopf bifurcation in a neutral population model with age structure. Mathematical Methods in the Applied Sciences, 2019, 42, 4747-4764.	2.3	7
106	Bifurcation analysis in delayed Nicholson blowflies equation with delayed harvest. Nonlinear Dynamics, 2021, 105, 1805-1819.	5.2	7
107	Stability analysis in a first-order complex differential equations with delay. Nonlinear Analysis: Theory, Methods & Applications, 2004, 59, 657-671.	1.1	6
108	BIFURCATION ANALYSIS OF A NFDE ARISING FROM MULTIPLE-DELAY FEEDBACK CONTROL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2011, 21, 759-774.	1.7	6

#	Article	IF	CITATIONS
109	Dynamic behaviors of a delayed HIV model with stage-structure. Communications in Nonlinear Science and Numerical Simulation, 2012, 17, 4753-4766.	3.3	6
110	ON HOPF BIFURCATION OF A DELAYED PREDATOR–PREY SYSTEM WITH DIFFUSION. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350023.	1.7	6
111	Accelerating propagation in a recursive system arising from seasonal population models with nonlocal dispersal. Journal of Differential Equations, 2019, 267, 150-179.	2.2	6
112	Spatiotemporal Dynamics of a Modified Leslie–Gower Model with Weak Allee Effect. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050169.	1.7	6
113	Stability and Bifurcation Analysis in a Predator–Prey Model with Age Structure and Two Delays. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2021, 31, 2150024.	1.7	6
114	Global dynamics of a HTLV-I infection model with CTL response. Electronic Journal of Qualitative Theory of Differential Equations, 2013, , 1-15.	0.5	6
115	Turing-Hopf bifurcation of a class of modified Leslie-Gower model with diffusion. Discrete and Continuous Dynamical Systems - Series B, 2018, 23, 765-783.	0.9	6
116	Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences and Engineering, 2018, 15, 693-715.	1.9	6
117	Equivariant Hopf Bifurcation in a Ring of Identical Cells with Delay. Mathematical Problems in Engineering, 2009, 2009, 1-34.	1.1	5
118	Stability and bifurcation analysis in a viral infection model with delays. Advances in Difference Equations, 2015, 2015, .	3.5	5
119	Stability and Bifurcation in a Diffusive Logistic Population Model with Multiple Delays. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550107.	1.7	5
120	Hopf bifurcation analysis of a diffusive single species model with stage structure and strong Allee effect. Mathematics and Computers in Simulation, 2018, 153, 1-14.	4.4	5
121	The effect of delayed feedback on the dynamics of an autocatalysis reaction–diffusion system. Nonlinear Analysis: Modelling and Control, 2018, 23, 749-770.	1.6	5
122	Analysis of dynamics in an eco-epidemiological model with stage structure. Advances in Difference Equations, 2016, 2016, .	3.5	4
123	Dynamics of a Diffusive Predator–Prey Model: The Effect of Conversion Rate. Journal of Dynamics and Differential Equations, 2018, 30, 1683-1701.	1.9	4
124	Spatiotemporal dynamics in a diffusive Holling-Tanner model near codimension-two bifurcations. Discrete and Continuous Dynamical Systems - Series B, 2022, 27, 3683.	0.9	4
125	Multiple bifurcations and spatiotemporal patterns for a coupled two-cell Brusselator model. Dynamics of Partial Differential Equations, 2011, 8, 636-384.	0.9	4
126	GLOBAL DYNAMICS OF TWO PHYTOPLANKTON-ZOOPLANKTON MODELS WITH TOXIC SUBSTANCES EFFECT. Journal of Applied Analysis and Computation, 2019, 9, 796-809.	0.5	4

#	Article	IF	CITATIONS
127	Dynamics in a Predator–Prey Model with Cooperative Hunting and Allee Effect. Mathematics, 2021, 9, 3193.	2.2	4
128	Dynamics of an infection model with two delays. International Journal of Biomathematics, 2015, 08, 1550068.	2.9	3
129	Stability and Bifurcation Analysis in the Photosensitive CDIMA System with Delayed Feedback Control. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750177.	1.7	3
130	Global behaviours of an in-host viral model with general incidence terms. Applicable Analysis, 2018, 97, 2431-2449.	1.3	3
131	Coexistence of Periodic Oscillations Induced by Predator Cannibalism in a Delayed Diffusive Predator–Prey Model. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2019, 29, 1950089.	1.7	3
132	Bifurcation analysis in a nonlinear electro-optical oscillator with delayed bandpass feedback. Nonlinear Dynamics, 2019, 96, 483-496.	5.2	3
133	Dynamical analysis in a diffusive predatorâ€prey system with a delay and strong Allee effect. Mathematical Methods in the Applied Sciences, 2020, 43, 1590-1607.	2.3	3
134	Hopf Bifurcation of a Delayed Single Population Model with Patch Structure. Journal of Dynamics and Differential Equations, 0, , 1.	1.9	3
135	Global Hopf bifurcation of a population model with stage structure and strong Allee effect. Discrete and Continuous Dynamical Systems - Series S, 2017, 10, 973-993.	1.1	3
136	Existence of periodic solutions for Liénard equations with finite delay. Science Bulletin, 1997, 42, 1145-1149.	1.7	2
137	Global existence of periodic solutions in an infection model. Applied Mathematics Letters, 2015, 48, 118-123.	2.7	2
138	Note on the stability of reaction–diffusion systems with delays by Lyapunov functional. Applied Mathematics Letters, 2018, 83, 151-155.	2.7	2
139	Multiple-parameter bifurcation analysis in a Kuramoto model with time delay and distributed shear. AIP Advances, 2018, 8, 055111.	1.3	2
140	Bifurcation analysis in a delayed reaction–diffusion–advection food-limited system. Applied Mathematics Letters, 2021, 120, 107332.	2.7	2
141	Synchronized Hopf Bifurcation Analysis in a Delay-Coupled Semiconductor Lasers System. Journal of Applied Mathematics, 2012, 2012, 1-20.	0.9	1
142	On stability of two degenerate reaction–diffusion systems. Journal of Mathematical Analysis and Applications, 2012, 390, 126-135.	1.0	1
143	Bifurcation Analysis in an n-Dimensional Diffusive Competitive Lotka–Volterra System with Time Delay. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550089. ————————————————————————————————————	1.7	1
144	Global stability of multi-group SEIRS epidemic models with vaccination. International Journal of Biomathematics, 2018, 11, 1850006.	2.9	1

#	Article	IF	CITATIONS
145	Stability analysis and Hopf bifurcation in a diffusive epidemic model with two delays. Mathematical Biosciences and Engineering, 2020, 17, 4127-4146.	1.9	1
146	Bifurcation Analysis of a Diffusive Virus Infection and Immune Response Model with Two Delays. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2022, 32, .	1.7	1
147	Bifurcation Analysis in a Kind of Fourth-Order Delay Differential Equation. Discrete Dynamics in Nature and Society, 2009, 2009, 1-20.	0.9	Ο
148	Stability and Hopf Bifurcation Analysis of Coupled Optoelectronic Feedback Loops. Abstract and Applied Analysis, 2013, 2013, 1-11.	0.7	0
149	Neimark-Sacker bifurcation analysis in a discrete neutral Nicholson's blowflies system with delay. Journal of Difference Equations and Applications, 2016, 22, 865-877.	1.1	Ο
150	On distribution of the roots for an exponential polynomial equation with applications. Applied Mathematics Letters, 2019, 90, 36-41.	2.7	0