Wei Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3604277/publications.pdf

Version: 2024-02-01

74 papers

8,304 citations

45 h-index 71 g-index

74 all docs

74 docs citations

times ranked

74

9796 citing authors

#	Article	IF	CITATIONS
1	3Dâ€Printed Anisotropic Polymer Materials for Functional Applications. Advanced Materials, 2022, 34, e2102877.	21.0	92
2	High throughput direct 3D bioprinting in multiwell plates. Biofabrication, 2021, 13, 025007.	7.1	40
3	Comparative study on 3D printing of polyamide 12 by selective laser sintering and multi jet fusion. Journal of Materials Processing Technology, 2021, 288, 116882.	6.3	155
4	Comparative study on the selective laser sintering of polypropylene homopolymer and copolymer: processability, crystallization kinetics, crystal phases and mechanical properties. Additive Manufacturing, 2021, 37, 101610.	3.0	14
5	Oriented structure of short fiber reinforced polymer composites processed by selective laser sintering: The role of powder-spreading process. International Journal of Machine Tools and Manufacture, 2021, 163, 103703.	13.4	41
6	Modeling the temperature, crystallization, and residual stress for selective laser sintering of polymeric powder. Acta Mechanica, 2021, 232, 3635-3653.	2.1	21
7	Bioprinting of Complex Vascularized Tissues. Methods in Molecular Biology, 2021, 2147, 163-173.	0.9	4
8	Recent Progress on Polymer Materials for Additive Manufacturing. Advanced Functional Materials, 2020, 30, 2003062.	14.9	364
9	A sequential 3D bioprinting and orthogonal bioconjugation approach for precision tissue engineering. Biomaterials, 2020, 258, 120294.	11.4	27
10	Development of organically modified montmorillonite/polypropylene composite powders for selective laser sintering. Powder Technology, 2020, 369, 25-37.	4.2	27
11	Oncogenic human herpesvirus hijacks proline metabolism for tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8083-8093.	7.1	36
12	3D Printing of Polymeric Multi-Layer Micro-Perforated Panels for Tunable Wideband Sound Absorption. Polymers, 2020, 12, 360.	4.5	32
13	Artificial bone scaffolds of coral imitation prepared by selective laser sintering. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104, 103664.	3.1	20
14	Photopolymerizable Biomaterials and Light-Based 3D Printing Strategies for Biomedical Applications. Chemical Reviews, 2020, 120, 10695-10743.	47.7	283
15	4D printing smart biosystems for nanomedicine. Nanomedicine, 2019, 14, 1643-1645.	3.3	25
16	3D Printing of Mixed Matrix Films Based on Metal–Organic Frameworks and Thermoplastic Polyamide 12 by Selective Laser Sintering for Water Applications. ACS Applied Materials & Samp; Interfaces, 2019, 11, 40564-40574.	8.0	75
17	Effect of silicon addition on the microstructure, mechanical and thermal properties of Cf/SiC composite prepared via selective laser sintering. Journal of Alloys and Compounds, 2019, 792, 1045-1053.	5.5	56
18	Projection Printing of Ultrathin Structures with Nanoscale Thickness Control. ACS Applied Materials & 2019, 11, 16059-16064.	8.0	5

#	Article	IF	CITATIONS
19	Rapid 3D bioprinting of in vitro cardiac tissue models using human embryonic stem cell-derived cardiomyocytes. Bioprinting, 2019, 13, e00040.	5.8	52
20	Biomimetic 3D-printed scaffolds for spinal cord injury repair. Nature Medicine, 2019, 25, 263-269.	30.7	460
21	Scanningless and continuous 3D bioprinting of human tissues with decellularized extracellular matrix. Biomaterials, 2019, 194, 1-13.	11.4	197
22	3D bioprinting mesenchymal stem cell-laden construct with core–shell nanospheres for cartilage tissue engineering. Nanotechnology, 2018, 29, 185101.	2.6	134
23	Three-Dimensional Printing of Bisphenol A-Free Polycarbonates. ACS Applied Materials & Samp; Interfaces, 2018, 10, 5331-5339.	8.0	17
24	How can 3D printing be a powerful tool in nanomedicine?. Nanomedicine, 2018, 13, 251-253.	3.3	15
25	3Dâ€Printing of Functional Biomedical Microdevices via Light―and Extrusionâ€Based Approaches. Small Methods, 2018, 2, 1700277.	8.6	79
26	Rapid continuous 3D printing of customizable peripheral nerve guidance conduits. Materials Today, 2018, 21, 951-959.	14.2	173
27	Nanoscale 3D printing of hydrogels for cellular tissue engineering. Journal of Materials Chemistry B, 2018, 6, 2187-2197.	5.8	78
28	Systematical mechanism of Polyamide-12 aging and its micro-structural evolution during laser sintering. Polymer Testing, 2018, 67, 370-379.	4.8	61
29	Modulating physical, chemical, and biological properties in 3D printing for tissue engineering applications. Applied Physics Reviews, 2018, 5, .	11.3	28
30	Preparation and selective laser sintering of a new nylon elastomer powder. Rapid Prototyping Journal, 2018, 24, 1026-1033.	3.2	2
31	3D bioprinting of hydrogels for retina cell culturing. Bioprinting, 2018, 12, e00029.	5.8	38
32	3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Advanced Drug Delivery Reviews, 2018, 132, 235-251.	13.7	297
33	Investigation into the processability, recyclability and crystalline structure of selective laser sintered Polyamide 6 in comparison with Polyamide 12. Polymer Testing, 2018, 69, 366-374.	4.8	62
34	Fabrication and characterization of carbon fiber reinforced SiC ceramic matrix composites based on 3D printing technology. Journal of the European Ceramic Society, 2018, 38, 4604-4613.	5.7	89
35	Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2485-2494.	3.3	89
36	Direct 3D bioprinting of prevascularized tissue constructs with complex microarchitecture. Biomaterials, 2017, 124, 106-115.	11.4	433

#	Article	IF	CITATIONS
37	A macroscale FEM-based approach for selective laser sintering of thermoplastics. International Journal of Advanced Manufacturing Technology, 2017, 91, 3169-3180.	3.0	15
38	3D printing scaffold coupled with low level light therapy for neural tissue regeneration. Biofabrication, 2017, 9, 025002.	7.1	68
39	Continuous Optical 3D Printing of Green Aliphatic Polyurethanes. ACS Applied Materials & Description of Continuous Optical 3D Printing of Green Aliphatic Polyurethanes. ACS Applied Materials & Description of Continuous Optical 3D Printing of Green Aliphatic Polyurethanes. ACS Applied Materials & Description of Continuous Optical 3D Printing of Green Aliphatic Polyurethanes. ACS Applied Materials & Description of Continuous Optical 3D Printing of Green Aliphatic Polyurethanes. ACS Applied Materials & Description of Continuous Optical 3D Printing of Green Aliphatic Polyurethanes. ACS Applied Materials & Description of Continuous Optical 3D Printing of Green Aliphatic Polyurethanes. ACS Applied Materials & Description of Continuous Optical 3D Printing Optical	8.0	56
40	The Strong Cell-based Hydrogen Peroxide Generation Triggered by Cold Atmospheric Plasma. Scientific Reports, 2017, 7, 10831.	3.3	56
41	4D printing of polymeric materials for tissue and organ regeneration. Materials Today, 2017, 20, 577-591.	14.2	292
42	The Specific Vulnerabilities of Cancer Cells to the Cold Atmospheric Plasma-Stimulated Solutions. Scientific Reports, 2017, 7, 4479.	3.3	83
43	Inaugural Charles River World Congress on Animal Models in Drug Discovery and Development. Journal of Translational Medicine, 2017, 15, .	4.4	1
44	A 3D printed nano bone matrix for characterization of breast cancer cell and osteoblast interactions. Nanotechnology, 2016, 27, 315103.	2.6	62
45	Tunable Surface and Matrix Chemistries in Optically Printed (0–3) Piezoelectric Nanocomposites. ACS Applied Materials & Company (1975) Applied & Company (1975) App	8.0	18
46	Synergistic Effect of Cold Atmospheric Plasma and Drug Loaded Core-shell Nanoparticles on Inhibiting Breast Cancer Cell Growth. Scientific Reports, 2016, 6, 21974.	3.3	70
47	Design and 3D Printing of Hydrogel Scaffolds with Fractal Geometries. ACS Biomaterials Science and Engineering, 2016, 2, 1763-1770.	5.2	82
48	Study on the selective laser sintering of a low-isotacticity polypropylene powder. Rapid Prototyping Journal, 2016, 22, 621-629.	3.2	22
49	3D printing of functional biomaterials for tissue engineering. Current Opinion in Biotechnology, 2016, 40, 103-112.	6.6	584
50	3D Bioprinting: Biologically Inspired Smart Release System Based on 3D Bioprinted Perfused Scaffold for Vascularized Tissue Regeneration (Adv. Sci. 8/2016). Advanced Science, 2016, 3, .	11,2	0
51	Hierarchical Fabrication of Engineered Vascularized Bone Biphasic Constructs via Dual 3D Bioprinting: Integrating Regional Bioactive Factors into Architectural Design. Advanced Healthcare Materials, 2016, 5, 2174-2181.	7.6	153
52	4D printing smart biomedical scaffolds with novel soybean oil epoxidized acrylate. Scientific Reports, 2016, 6, 27226.	3.3	296
53	Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation. Scientific Reports, 2016, 6, 32876.	3.3	99
54	Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications. Tissue Engineering - Part C: Methods, 2016, 22, 952-963.	2.1	128

#	Article	IF	CITATIONS
55	A novel method based on selective laser sintering for preparing high-performance carbon fibres/polyamide12/epoxy ternary composites. Scientific Reports, 2016, 6, 33780.	3.3	57
56	Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2206-2211.	7.1	676
57	3D printed nanocomposite matrix for the study of breast cancer bone metastasis. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 69-79.	3.3	162
58	3Dâ€Printed Artificial Microfish. Advanced Materials, 2015, 27, 4411-4417.	21.0	251
59	Three-dimensional direct cell patterning in collagen hydrogels with near-infrared femtosecond laser. Scientific Reports, 2015, 5, 17203.	3.3	78
60	Cold Atmospheric Plasma Modified Electrospun Scaffolds with Embedded Microspheres for Improved Cartilage Regeneration. PLoS ONE, 2015, 10, e0134729.	2.5	29
61	Enhanced human bone marrow mesenchymal stem cell functions on cathodic arc plasma-treated titanium. International Journal of Nanomedicine, 2015, 10, 7385.	6.7	8
62	Material optimization and post-processing of sand moulds manufactured by the selective laser sintering of binder-coated Al2O3 sands. Journal of Materials Processing Technology, 2015, 225, 93-102.	6.3	33
63	Engineering a biomimetic three-dimensional nanostructured bone model for breast cancer bone metastasis study. Acta Biomaterialia, 2015, 14, 164-174.	8.3	70
64	Microstructure and mechanical properties of aluminium alloy cellular lattice structures manufactured by direct metal laser sintering. Materials Science & Degineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 628, 238-246.	5.6	241
65	3D Printing and Nanomanufacturing. , 2015, , 25-55.		5
66	Highly aligned nanocomposite scaffolds by electrospinning and electrospraying for neural tissue regeneration. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 693-704.	3.3	108
67	Investigation into mechanical and microstructural properties of polypropylene manufactured by selective laser sintering in comparison with injection molding counterparts. Materials and Design, 2015, 82, 37-45.	7.0	88
68	Enhanced Human Bone Marrow Mesenchymal Stem Cell Chondrogenic Differentiation on Cold Atmospheric Plasma Modified Cartilage Scaffold. Materials Research Society Symposia Proceedings, 2014, 1723, 1.	0.1	3
69	Development of a Novel 3D Bioprinted In Vitro Nano Bone Model for Breast Cancer Bone Metastasis Study. Materials Research Society Symposia Proceedings, 2014, 1724, 1.	0.1	5
70	3D Optical Printing of Piezoelectric Nanoparticle–Polymer Composite Materials. ACS Nano, 2014, 8, 9799-9806.	14.6	296
71	Structural reinforcement of cell-laden hydrogels with microfabricated three dimensional scaffolds. Biomaterials Science, 2014, 2, 703-709.	5.4	88
72	3D nano/microfabrication techniques and nanobiomaterials for neural tissue regeneration. Nanomedicine, 2014, 9, 859-875.	3.3	98

#	Article	IF	CITATIONS
73	Bio-inspired detoxification using 3D-printed hydrogel nanocomposites. Nature Communications, 2014, 5, 3774.	12.8	271
74	Relative impact of uniaxial alignment vs. form-induced stress on differentiation of human adipose derived stem cells. Biomaterials, 2013, 34, 9812-9818.	11.4	31