Sebastien Bonnet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/360413/publications.pdf

Version: 2024-02-01

74 papers

7,269 citations

34 h-index 70 g-index

75 all docs

75 docs citations

75 times ranked 7587 citing authors

#	Article	IF	CITATIONS
1	A Mitochondria-K+ Channel Axis Is Suppressed in Cancer and Its Normalization Promotes Apoptosis and Inhibits Cancer Growth. Cancer Cell, 2007, 11 , $37-51$.	16.8	1,374
2	Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. European Respiratory Journal, 2019, 53, 1801887.	6.7	776
3	An Abnormal Mitochondrial–Hypoxia Inducible Factor-1α–Kv Channel Pathway Disrupts Oxygen Sensing and Triggers Pulmonary Arterial Hypertension in Fawn Hooded Rats. Circulation, 2006, 113, 2630-2641.	1.6	530
4	Dichloroacetate Prevents and Reverses Pulmonary Hypertension by Inducing Pulmonary Artery Smooth Muscle Cell Apoptosis. Circulation Research, 2004, 95, 830-840.	4.5	416
5	The nuclear factor of activated T cells in pulmonary arterial hypertension can be therapeutically targeted. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 11418-11423.	7.1	332
6	Gene therapy targeting survivin selectively induces pulmonary vascular apoptosis and reverses pulmonary arterial hypertension. Journal of Clinical Investigation, 2005, 115, 1479-1491.	8.2	323
7	Role for DNA Damage Signaling in Pulmonary Arterial Hypertension. Circulation, 2014, 129, 786-797.	1.6	211
8	Combination therapy versus monotherapy for pulmonary arterial hypertension: a meta-analysis. Lancet Respiratory Medicine, the, 2016, 4, 291-305.	10.7	190
9	Downregulation of MicroRNA-126 Contributes to the Failing Right Ventricle in Pulmonary Arterial Hypertension. Circulation, 2015, 132, 932-943.	1.6	173
10	Sirtuin 3 Deficiency Is Associated with Inhibited Mitochondrial Function and Pulmonary Arterial Hypertension in Rodents and Humans. Cell Metabolism, 2014, 20, 827-839.	16.2	170
11	The cancer theory of pulmonary arterial hypertension. Pulmonary Circulation, 2017, 7, 285-299.	1.7	154
12	Bromodomain-Containing Protein 4. Circulation Research, 2015, 117, 525-535.	4.5	143
13	MicroRNA-138 and MicroRNA-25 Down-regulate Mitochondrial Calcium Uniporter, Causing the Pulmonary Arterial Hypertension Cancer Phenotype. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 515-529.	5.6	134
14	Epigenetic Dysregulation of the Dynamin-Related Protein 1 Binding Partners MiD49 and MiD51 Increases Mitotic Mitochondrial Fission and Promotes Pulmonary Arterial Hypertension. Circulation, 2018, 138, 287-304.	1.6	115
15	Dehydroepiandrosterone inhibits the Src/STAT3 constitutive activation in pulmonary arterial hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H1798-H1809.	3.2	114
16	Translating Research into Improved Patient Care in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 583-595.	5.6	113
17	Standards and Methodological Rigor in Pulmonary Arterial Hypertension Preclinical and Translational Research. Circulation Research, 2018, 122, 1021-1032.	4.5	111
18	Kr $\tilde{A}^{1}\!\!/\!\!4$ ppel-like Factor 5 contributes to pulmonary artery smooth muscle proliferation and resistance to apoptosis in human pulmonary arterial hypertension. Respiratory Research, 2011, 12, 128.	3.6	103

#	Article	IF	Citations
19	miR-223 reverses experimental pulmonary arterial hypertension. American Journal of Physiology - Cell Physiology, 2015, 309, C363-C372.	4.6	103
20	A miR-208–Mef2 Axis Drives the Decompensation of Right Ventricular Function in Pulmonary Hypertension. Circulation Research, 2015, 116, 56-69.	4.5	101
21	Multicenter Preclinical Validation of BET Inhibition for the Treatment of Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 910-920.	5.6	100
22	Identification of Long Noncoding RNA H19 as a New Biomarker and Therapeutic Target in Right Ventricular Failure in Pulmonary Arterial Hypertension. Circulation, 2020, 142, 1464-1484.	1.6	96
23	Role for Runt-related Transcription Factor 2 in Proliferative and Calcified Vascular Lesions in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1273-1285.	5.6	88
24	Critical Role for the Advanced Glycation Endâ€Products Receptor in Pulmonary Arterial Hypertension Etiology. Journal of the American Heart Association, 2013, 2, e005157.	3.7	85
25	Epigenetic Metabolic Reprogramming of Right Ventricular Fibroblasts in Pulmonary Arterial Hypertension. Circulation Research, 2020, 126, 1723-1745.	4.5	83
26	Potassium channel diversity in the pulmonary arteries and pulmonary veins: Implications for regulation of the pulmonary vasculature in health and during pulmonary hypertension., 2007, 115, 56-69.		77
27	Mitochondrial HSP90 Accumulation Promotes Vascular Remodeling in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2018, 198, 90-103.	5.6	75
28	Metabolic Syndrome Exacerbates Pulmonary Hypertension due to Left Heart Disease. Circulation Research, 2019, 125, 449-466.	4.5	73
29	Implication of Inflammation and Epigenetic Readers in Coronary Artery Remodeling in Patients With Pulmonary Arterial Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1513-1523.	2.4	72
30	HDAC6: A Novel Histone Deacetylase Implicated in Pulmonary Arterial Hypertension. Scientific Reports, 2017, 7, 4546.	3.3	70
31	FOXM1 promotes pulmonary artery smooth muscle cell expansion in pulmonary arterial hypertension. Journal of Molecular Medicine, 2018, 96, 223-235.	3.9	62
32	RAGE-Dependent Activation of the Oncoprotein Pim1 Plays a Critical Role in Systemic Vascular Remodeling Processes. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 2114-2124.	2.4	61
33	Use of Î ² -Blockers in Pulmonary Hypertension. Circulation: Heart Failure, 2017, 10, .	3.9	56
34	Bridging Lung Development with Chronic Obstructive Pulmonary Disease. Relevance of Developmental Pathways in Chronic Obstructive Pulmonary Disease Pathogenesis. American Journal of Respiratory and Critical Care Medicine, 2016, 193, 362-375.	5.6	54
35	$17\hat{l}^2$ -estradiol and estrogen receptor $\hat{l}\pm$ protect right ventricular function in pulmonary hypertension via BMPR2 and apelin. Journal of Clinical Investigation, 2021, 131, .	8.2	47
36	Inhibition of CHK 1 (Checkpoint Kinase 1) Elicits Therapeutic Effects in Pulmonary Arterial Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 1667-1681.	2.4	40

#	Article	IF	CITATIONS
37	Macrophage–NLRP3 Activation Promotes Right Ventricle Failure in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2022, 206, 608-624.	5.6	37
38	The Latest in Animal Models of Pulmonary Hypertension and Right Ventricular Failure. Circulation Research, 2022, 130, 1466-1486.	4.5	35
39	Compromised Cerebrovascular Regulation and Cerebral Oxygenation in Pulmonary Arterial Hypertension. Journal of the American Heart Association, 2017, 6, .	3.7	32
40	Extended Anticoagulation for VTE. Chest, 2019, 155, 1199-1216.	0.8	26
41	Clinical value of non-coding RNAs in cardiovascular, pulmonary, and muscle diseases. American Journal of Physiology - Cell Physiology, 2020, 318, C1-C28.	4.6	26
42	miRNAs in PAH: biomarker, therapeutic target or both?. Drug Discovery Today, 2014, 19, 1264-1269.	6.4	25
43	A Central Role for Oxygen-Sensitive K+ Channels and Mitochondria in the Specialized Oxygen-Sensing System. Novartis Foundation Symposium, 2008, , 157-175.	1.1	24
44	Oxidized DNA Precursors Cleanup by NUDT1 Contributes to Vascular Remodeling in Pulmonary Arterial Hypertension. American Journal of Respiratory and Critical Care Medicine, 2021, 203, 614-627.	5.6	22
45	Noncanonical HIPPO/MST Signaling via BUB3 and FOXO Drives Pulmonary Vascular Cell Growth and Survival. Circulation Research, 2022, 130, 760-778.	4.5	19
46	PIM1 (Moloney Murine Leukemia Provirus Integration Site) Inhibition Decreases the Nonhomologous End-Joining DNA Damage Repair Signaling Pathway in Pulmonary Hypertension. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 783-801.	2.4	16
47	Computational repurposing of therapeutic small molecules from cancer to pulmonary hypertension. Science Advances, 2021, 7, eabh3794.	10.3	16
48	Direct oral anticoagulants in the treatment of acute venous thromboembolism in patients with obesity: A systematic review with meta-analysis. Pharmacological Research, 2021, 163, 105317.	7.1	15
49	Epigenetic reactivation of transcriptional programs orchestrating fetal lung development in human pulmonary hypertension. Science Translational Medicine, 2022, 14, .	12.4	15
50	PARP1-PKM2 Axis Mediates Right Ventricular Failure Associated With Pulmonary Arterial Hypertension. JACC Basic To Translational Science, 2022, 7, 384-403.	4.1	14
51	Emerging therapies for right ventricular dysfunction and failure. Cardiovascular Diagnosis and Therapy, 2020, 10, 1735-1767.	1.7	13
52	Potential for inhibition of checkpoint kinases $1/2$ in pulmonary fibrosis and secondary pulmonary hypertension. Thorax, 2022, 77, 247-258.	5.6	11
53	Novel Insights into the Therapeutic Potential of Lung-Targeted Gene Transfer in the Most Common Respiratory Diseases. Cells, 2022, 11, 984.	4.1	10
54	Implication of EZH2 in the Pro-Proliferative and Apoptosis-Resistant Phenotype of Pulmonary Artery Smooth Muscle Cells in PAH: A Transcriptomic and Proteomic Approach. International Journal of Molecular Sciences, 2021, 22, 2957.	4.1	9

#	Article	IF	Citations
55	Preclinical Investigation of Trifluoperazine as a Novel Therapeutic Agent for the Treatment of Pulmonary Arterial Hypertension. International Journal of Molecular Sciences, 2021, 22, 2919.	4.1	9
56	Fetal Gene Reactivation in Pulmonary Arterial Hypertension: GOOD, BAD, or BOTH?. Cells, 2021, 10, 1473.	4.1	9
57	Early Evidence for the Role of IncRNA TUG1 in Vascular Remodelling in Pulmonary Hypertension. Canadian Journal of Cardiology, 2019, 35, 1433-1434.	1.7	7
58	The Iron Paradigm of Pulmonary Arterial Hypertension. Circulation Research, 2015, 116, 1636-1638.	4.5	6
59	Career Development of Young Physician–Scientists in the Cardiovascular Sciences. Circulation Research, 2018, 122, 1330-1333.	4.5	6
60	Effect of p53 activation on experimental right ventricular hypertrophy. PLoS ONE, 2020, 15, e0234872.	2.5	6
61	R-Crizotinib predisposes to and exacerbates pulmonary arterial hypertension in animal models. European Respiratory Journal, 2021, 57, 2003271.	6.7	6
62	Small SeP or Giant Leap for Pulmonary Hypertension Research?. Circulation, 2018, 138, 624-626.	1.6	5
63	Trial Duration and Risk Reduction in Combination Therapy Trials for Pulmonary Arterial Hypertension. Chest, 2018, 153, 1142-1152.	0.8	4
64	Pulmonary hypertension thresholds: time to lower further?. Lancet Respiratory Medicine, the, 2020, 8, 834-836.	10.7	4
65	Increasing Pulmonary Artery Pulsatile Flow Improves Hypoxic Pulmonary Hypertension in Piglets. Journal of Visualized Experiments, 2015, , e52571.	0.3	3
66	Right ventricular and pulmonary vascular changes in pulmonary hypertension associated with left heart disease. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H1144-H1145.	3.2	3
67	Revisiting the Role for HIF Stabilizers in Bronchopulmonary Dysplasia. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1075-1077.	5.6	3
68	Clinical trial research in focus: improving drug development and trial design in pulmonary arterial hypertension. Lancet Respiratory Medicine, the, 2017, 5, 544-546.	10.7	2
69	Pulmonary tumor thrombotic microangiopathy: A systematic review of the literature. Canadian Journal of Respiratory, Critical Care, and Sleep Medicine, 2021, 5, 20-27.	0.5	2
70	Involvement of PFKFB3 in Pulmonary Arterial Hypertension Pathogenesis. Is It All about Glycolysis?. American Journal of Respiratory and Critical Care Medicine, 2019, 200, 532-534.	5.6	1
71	Role of PKM2-PARP1/Inflammation/Oxidative DNA Damage Axis in the Pathogenesis of Right Ventricular Failure Associated with Pulmonary Arterial Hypertension., 2020,,.		1
72	Long Non-Coding RNA H19 Promotes Right Ventricular Failure in PAH., 2020,,.		1

#	Article	lF	CITATIONS
73	Commentary on: Xbp1s-Ddit3, DNA damage and pulmonary hypertension. Clinical Science, 2022, 136, 163-166.	4.3	1
74	Long Non-Coding RNA H19 in the Pathogenesis of Right Ventricular Failure Associated with Pulmonary Arterial Hypertension -A Putative Novel Biomarker and Therapeutic Target , 2019, , .		0