
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3603392/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature, 2015, 526, 660-665.	27.8	4,072
2	Pore-forming activity and structural autoinhibition of the gasdermin family. Nature, 2016, 535, 111-116.	27.8	1,812
3	Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature, 2017, 547, 99-103.	27.8	1,793
4	A circular RNA protects the heart from pathological hypertrophy and heart failure by targeting miR-223. European Heart Journal, 2016, 37, 2602-2611.	2.2	754
5	The Long Noncoding RNA CHRF Regulates Cardiac Hypertrophy by Targeting miR-489. Circulation Research, 2014, 114, 1377-1388.	4.5	525
6	miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nature Medicine, 2011, 17, 71-78.	30.7	521
7	APF IncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nature Communications, 2015, 6, 6779.	12.8	405
8	CARL IncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nature Communications, 2014, 5, 3596.	12.8	388
9	miR-23a functions downstream of NFATc3 to regulate cardiac hypertrophy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12103-12108.	7.1	330
10	Circular RNA mediates cardiomyocyte death via miRNA-dependent upregulation of MTP18 expression. Cell Death and Differentiation, 2017, 24, 1111-1120.	11.2	268
11	LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nature Communications, 2018, 9, 29.	12.8	247
12	MicroRNA-103/107 Regulate Programmed Necrosis and Myocardial Ischemia/Reperfusion Injury Through Targeting FADD. Circulation Research, 2015, 117, 352-363.	4.5	227
13	miR-484 regulates mitochondrial network through targeting Fis1. Nature Communications, 2012, 3, 781.	12.8	192
14	The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/ FAM65B pathway. Cell Death and Differentiation, 2019, 26, 1299-1315.	11.2	177
15	Foxo3a Inhibits Cardiomyocyte Hypertrophy through Transactivating Catalase. Journal of Biological Chemistry, 2008, 283, 29730-29739.	3.4	167
16	Biogenesis, functions and clinical significance of circRNAs in gastric cancer. Molecular Cancer, 2019, 18, 136.	19.2	155
17	Oxidative Modification of miR-184 Enables It to Target Bcl-xL and Bcl-w. Molecular Cell, 2015, 59, 50-61.	9.7	141
18	miR-9 and NFATc3 Regulate Myocardin in Cardiac Hypertrophy. Journal of Biological Chemistry, 2010, 285, 11903-11912.	3.4	135

#	Article	IF	CITATIONS
19	The Role of MicroRNAs in Myocardial Infarction: From Molecular Mechanism to Clinical Application. International Journal of Molecular Sciences, 2017, 18, 745.	4.1	133
20	Long Noncoding RNA CPR (Cardiomyocyte Proliferation Regulator) Regulates Cardiomyocyte Proliferation and Cardiac Repair. Circulation, 2019, 139, 2668-2684.	1.6	125
21	microRNAs: important regulators of stem cells. Stem Cell Research and Therapy, 2017, 8, 110.	5.5	122
22	MDRL lncRNA Regulates the Processing of miR-484 Primary Transcript by Targeting miR-361. PLoS Genetics, 2014, 10, e1004467.	3.5	108
23	Cardiac Hypertrophy Is Positively Regulated by MicroRNA miR-23a. Journal of Biological Chemistry, 2012, 287, 589-599.	3.4	105
24	Foxo3a Regulates Apoptosis by Negatively Targeting miR-21. Journal of Biological Chemistry, 2010, 285, 16958-16966.	3.4	95
25	The piRNA CHAPIR regulates cardiac hypertrophy by controlling METTL3-dependent N6-methyladenosine methylation of Parp10 mRNA. Nature Cell Biology, 2020, 22, 1319-1331.	10.3	93
26	A comprehensive review of circRNA: from purification and identification to disease marker potential. PeerJ, 2018, 6, e5503.	2.0	89
27	miR-761 regulates the mitochondrial network by targeting mitochondrial fission factor. Free Radical Biology and Medicine, 2013, 65, 371-379.	2.9	88
28	E2F1-dependent miR-421 regulates mitochondrial fragmentation and myocardial infarction by targeting Pink1. Nature Communications, 2015, 6, 7619.	12.8	87
29	Insights into the regulatory role of circRNA in angiogenesis and clinical implications. Atherosclerosis, 2020, 298, 14-26.	0.8	79
30	Mitochondrial miR-762 regulates apoptosis and myocardial infarction by impairing ND2. Cell Death and Disease, 2019, 10, 500.	6.3	70
31	Understanding cardiomyocyte proliferation: an insight into cell cycle activity. Cellular and Molecular Life Sciences, 2017, 74, 1019-1034.	5.4	63
32	MicroRNA as a Therapeutic Target in Cardiac Remodeling. BioMed Research International, 2017, 2017, 1-25.	1.9	63
33	Temporal scaling properties and spatial synchronization of spontaneous blood oxygenation levelâ€dependent (BOLD) signal fluctuations in rat sensorimotor network at different levels of isoflurane anesthesia. NMR in Biomedicine, 2011, 24, 61-67.	2.8	62
34	Emerging Function and Clinical Significance of Exosomal circRNAs in Cancer. Molecular Therapy - Nucleic Acids, 2020, 21, 367-383.	5.1	58
35	Near-infrared light-responsive nanoparticles with thermosensitive yolk-shell structure for multimodal imaging and chemo-photothermal therapy of tumor. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 1607-1616.	3.3	56
36	The role of postâ€translational modifications in cardiac hypertrophy. Journal of Cellular and Molecular Medicine, 2019, 23, 3795-3807.	3.6	56

#	Article	IF	CITATIONS
37	The role of miR-214 in cardiovascular diseases. European Journal of Pharmacology, 2017, 816, 138-145.	3.5	54
38	MiR-485-5p modulates mitochondrial fission through targeting mitochondrial anchored protein ligase in cardiac hypertrophy. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2017, 1863, 2871-2881.	3.8	45
39	The Multifaceted Roles of Pyroptotic Cell Death Pathways in Cancer. Cancers, 2019, 11, 1313.	3.7	45
40	PIWI family emerging as a decisive factor of cell fate: An overview. European Journal of Cell Biology, 2017, 96, 746-757.	3.6	44
41	The Role and Molecular Mechanism of Non-Coding RNAs in Pathological Cardiac Remodeling. International Journal of Molecular Sciences, 2017, 18, 608.	4.1	42
42	Mechanism of Ferroptosis: A Potential Target for Cardiovascular Diseases Treatment. , 2021, 12, 261.		41
43	Deep pyramid local attention neural network for cardiac structure segmentation in two-dimensional echocardiography. Medical Image Analysis, 2021, 67, 101873.	11.6	39
44	Mitochondrial function in cardiac hypertrophy. International Journal of Cardiology, 2013, 167, 1118-1125.	1.7	37
45	Foxo3a inhibits mitochondrial fission and protects against doxorubicin-induced cardiotoxicity by suppressing MIEF2. Free Radical Biology and Medicine, 2017, 104, 360-370.	2.9	34
46	The Role of MicroRNA and LncRNA–MicroRNA Interactions in Regulating Ischemic Heart Disease. Journal of Cardiovascular Pharmacology and Therapeutics, 2017, 22, 105-111.	2.0	34
47	The Emerging Roles of Autophagy-Related MicroRNAs in Cancer. International Journal of Biological Sciences, 2021, 17, 134-150.	6.4	34
48	The circRNA CNEACR regulates necroptosis of cardiomyocytes through Foxa2 suppression. Cell Death and Differentiation, 2022, 29, 527-539.	11.2	33
49	NFATc3-dependent expression of miR-153-3p promotes mitochondrial fragmentation in cardiac hypertrophy by impairing mitofusin-1 expression. Theranostics, 2020, 10, 553-566.	10.0	32
50	Reactive Oxygen Species Related Noncoding RNAs as Regulators of Cardiovascular Diseases. International Journal of Biological Sciences, 2019, 15, 680-687.	6.4	31
51	Alteration of MDM2 by the Small Molecule YF438 Exerts Antitumor Effects in Triple-Negative Breast Cancer. Cancer Research, 2021, 81, 4027-4040.	0.9	30
52	Effects of mi <scp>RNA</scp> s on myocardial apoptosis by modulating mitochondria related proteins. Clinical and Experimental Pharmacology and Physiology, 2017, 44, 431-440.	1.9	29
53	Non-coding RNA-linked epigenetic regulation in cardiac hypertrophy. International Journal of Biological Sciences, 2018, 14, 1133-1141.	6.4	29
54	The Underlying Mechanisms of Noncoding RNAs in the Chemoresistance of Hepatocellular Carcinoma. Molecular Therapy - Nucleic Acids, 2020, 21, 13-27.	5.1	29

#	Article	IF	CITATIONS
55	Circular RNA Expression Profiles and the Pro-tumorigenic Function of CircRNA_10156 in Hepatitis B Virus-Related Liver Cancer. International Journal of Medical Sciences, 2020, 17, 1351-1365.	2.5	28
56	PIWIâ€Interacting RNA HAAPIR Regulates Cardiomyocyte Death After Myocardial Infarction by Promoting NAT10â€Mediated ac ⁴ C Acetylation of Tfec mRNA. Advanced Science, 2022, 9, e2106058.	11.2	28
57	A Novel Endoscopic Cerenkov Luminescence Imaging System for Intraoperative Surgical Navigation. Molecular Imaging, 2015, 14, 7290.2015.00018.	1.4	27
58	Role of noncoding RNAs in regulation of cardiac cell death and cardiovascular diseases. Cellular and Molecular Life Sciences, 2018, 75, 291-300.	5.4	27
59	Extrachromosomal Circular DNAs: Origin, formation and emerging function in Cancer. International Journal of Biological Sciences, 2021, 17, 1010-1025.	6.4	27
60	MicroRNA-34 Family and Its Role in Cardiovascular Disease. Critical Reviews in Eukaryotic Gene Expression, 2015, 25, 293-297.	0.9	26
61	Mitochondrial metabolism is inhibited by the <scp>HIF</scp> 1αâ€ <scp>MYC</scp> â€ <scp>PGC</scp> â€1β axis <scp>BRAF</scp> V600E thyroid cancer. FEBS Journal, 2019, 286, 1420-1436.	s in 4.7	25
62	MicroRNA-2861 regulates programmed necrosis in cardiomyocyte by impairing adenine nucleotide translocase 1 expression. Free Radical Biology and Medicine, 2016, 91, 58-67.	2.9	24
63	miR-155 Promotes ox-LDL-Induced Autophagy in Human Umbilical Vein Endothelial Cells. Mediators of Inflammation, 2017, 2017, 1-7.	3.0	23
64	circRNA is a potential target for cardiovascular diseases treatment. Molecular and Cellular Biochemistry, 2022, 477, 417-430.	3.1	19
65	Association of TRAIL and Its Receptors with Large-Artery Atherosclerotic Stroke. PLoS ONE, 2015, 10, e0136414.	2.5	18
66	The role of K63â€linked polyubiquitination in cardiac hypertrophy. Journal of Cellular and Molecular Medicine, 2018, 22, 4558-4567.	3.6	17
67	Nanomedicines for the Efficient Treatment of Intracellular Bacteria: The "ART―Principle. Frontiers in Chemistry, 2021, 9, 775682.	3.6	16
68	Development of vericiguat: The first soluble guanylate cyclase (sGC) stimulator launched for heart failure with reduced ejection fraction (HFrEF). Biomedicine and Pharmacotherapy, 2022, 149, 112894.	5.6	15
69	Glucose-responsive nanogels efficiently maintain the stability and activity of therapeutic enzymes. Nanotechnology Reviews, 2022, 11, 1511-1524.	5.8	14
70	Effects of REDOX in Regulating and Treatment of Metabolic and Inflammatory Cardiovascular Diseases. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-13.	4.0	13
71	Insights Into Ferroptosis, a Novel Target for the Therapy of Cancer. Frontiers in Oncology, 2022, 12, 812534.	2.8	13
72	Association of Clinical and Immunological Characteristics With Disease Severity and Outcomes in 211 Patients With COVID-19 in Wuhan, China. Frontiers in Cellular and Infection Microbiology, 2021, 11, 667487.	3.9	12

#	Article	IF	CITATIONS
73	The Emerging Roles of Circular RNAs in the Chemoresistance of Gastrointestinal Cancer. Frontiers in Cell and Developmental Biology, 2022, 10, 821609.	3.7	12
74	Emerging function and clinical significance of extracellular vesicle noncoding RNAs in lung cancer. Molecular Therapy - Oncolytics, 2022, 24, 814-833.	4.4	10
75	A FGFR1 inhibitor patent review: progress since 2010. Expert Opinion on Therapeutic Patents, 2017, 27, 439-454.	5.0	8
76	Systematically Displaying the Pathogenesis of Keratoconus via Multi-Level Related Gene Enrichment-Based Review. Frontiers in Medicine, 2021, 8, 770138.	2.6	6
77	PiRNAs link epigenetic modifications to reprogramming. Histology and Histopathology, 2014, 29, 1489-97.	0.7	6
78	Identification of Extrachromosomal Linear microDNAs Interacted with microRNAs in the Cell Nuclei. Cells, 2019, 8, 111.	4.1	3
79	Sensitive naked-eye detection of telomerase activity based on exponential amplification reaction and lateral flow assay. Analytical and Bioanalytical Chemistry, 2022, 414, 6139-6147.	3.7	3
80	Inhibition of Heat Shock Protein 90 Attenuates the Damage of Blood-Brain Barrier Integrity in Traumatic Brain Injury Mouse Model. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-8.	4.0	0