
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3603374/publications.pdf Version: 2024-02-01

ΗΟΝΟΧΙΑΝ ΗΑΝ

#	Article	IF	CITATIONS
1	Roles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Accounts of Chemical Research, 2013, 46, 1900-1909.	15.6	2,368
2	Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chemical Reviews, 2014, 114, 9987-10043.	47.7	2,096
3	Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nature Communications, 2013, 4, 1432.	12.8	1,458
4	Photocatalytic Overall Water Splitting Promoted by an α–βâ€phase Junction on Ga ₂ O ₃ . Angewandte Chemie - International Edition, 2012, 51, 13089-13092.	13.8	574
5	Highly efficient photocatalysts constructed by rational assembly of dual-cocatalysts separately on different facets of BiVO ₄ . Energy and Environmental Science, 2014, 7, 1369-1376.	30.8	491
6	Photoelectrocatalytic Materials for Solar Water Splitting. Advanced Energy Materials, 2018, 8, 1800210.	19.5	364
7	A Tantalum Nitride Photoanode Modified with a Holeâ€Storage Layer for Highly Stable Solar Water Splitting. Angewandte Chemie - International Edition, 2014, 53, 7295-7299.	13.8	354
8	Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases. Energy and Environmental Science, 2015, 8, 2377-2382.	30.8	313
9	Enhancing the stability of cobalt spinel oxide towards sustainable oxygen evolution in acid. Nature Catalysis, 2022, 5, 109-118.	34.4	236
10	Excellent photo-Fenton catalysts of Fe–Co Prussian blue analogues and their reaction mechanism study. Applied Catalysis B: Environmental, 2015, 179, 196-205.	20.2	222
11	Earthâ€Abundant Transitionâ€Metalâ€Based Electrocatalysts for Water Electrolysis to Produce Renewable Hydrogen. Chemistry - A European Journal, 2018, 24, 18334-18355.	3.3	203
12	Stable Potential Windows for Longâ€Term Electrocatalysis by Manganese Oxides Under Acidic Conditions. Angewandte Chemie - International Edition, 2019, 58, 5054-5058.	13.8	182
13	Fabrication and Kinetic Study of a Ferrihydrite-Modified BiVO ₄ Photoanode. ACS Catalysis, 2017, 7, 1868-1874.	11.2	151
14	Effect of Redox Cocatalysts Location on Photocatalytic Overall Water Splitting over Cubic NaTaO ₃ Semiconductor Crystals Exposed with Equivalent Facets. ACS Catalysis, 2016, 6, 2182-2191.	11.2	149
15	Electroless plated Ni–B films as highly active electrocatalysts for hydrogen production from water over a wide pH range. Nano Energy, 2016, 19, 98-107.	16.0	143
16	Understanding the anatase–rutile phase junction in charge separation and transfer in a TiO ₂ electrode for photoelectrochemical water splitting. Chemical Science, 2016, 7, 6076-6082.	7.4	138
17	Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting. Nature Communications, 2020, 11, 4622.	12.8	133
18	Enhancement of visible-light-driven O2 evolution from water oxidation on WO3 treated with hydrogen. Journal of Catalysis, 2013, 307, 148-152.	6.2	118

#	Article	IF	CITATIONS
19	CO2Splitting by H2O to CO and O2under UV Light in TiMCM-41 Silicate Sieve. Journal of Physical Chemistry B, 2004, 108, 18269-18273.	2.6	117
20	Ultra-deep desulfurization via reactive adsorption on Ni/ZnO: The effect of ZnO particle size on the adsorption performance. Applied Catalysis B: Environmental, 2012, 119-120, 13-19.	20.2	117
21	Selective conversion of aqueous glucose to value-added sugar aldose on TiO2-based photocatalysts. Journal of Catalysis, 2014, 314, 101-108.	6.2	117
22	Composite Sr2TiO4/SrTiO3(La,Cr) heterojunction based photocatalyst for hydrogen production under visible light irradiation. Journal of Materials Chemistry A, 2013, 1, 7905.	10.3	114
23	Catalytic Activation of H ₂ under Mild Conditions by an [FeFe]-Hydrogenase Model via an Active μ-Hydride Species. Journal of the American Chemical Society, 2013, 135, 13688-13691.	13.7	107
24	Effects of Zn2+ and Pb2+ dopants on the activity of Ga2O3-based photocatalysts for water splitting. Physical Chemistry Chemical Physics, 2013, 15, 19380.	2.8	97
25	Nitrogen-doped layered oxide Sr5Ta4O15â^'xNx for water reduction and oxidation under visible light irradiation. Journal of Materials Chemistry A, 2013, 1, 5651.	10.3	89
26	Selective photocatalytic conversion of glycerol to hydroxyacetaldehyde in aqueous solution on facet tuned TiO ₂ -based catalysts. Chemical Communications, 2014, 50, 165-167.	4.1	83
27	Effects of surface modification on photocatalytic activity of CdS nanocrystals studied by photoluminescence spectroscopy. Physical Chemistry Chemical Physics, 2013, 15, 553-560.	2.8	81
28	Unraveling a Single-Step Simultaneous Two-Electron Transfer Process from Semiconductor to Molecular Catalyst in a CoPy/CdS Hybrid System for Photocatalytic H ₂ Evolution under Strong Alkaline Conditions. Journal of the American Chemical Society, 2016, 138, 10726-10729.	13.7	79
29	Photoelectrochemical Water Splitting Promoted with a Disordered Surface Layer Created by Electrochemical Reduction. ACS Applied Materials & Interfaces, 2015, 7, 3791-3796.	8.0	75
30	Strategies for Efficient Charge Separation and Transfer in Artificial Photosynthesis of Solar Fuels. ChemSusChem, 2017, 10, 4277-4305.	6.8	75
31	The oxidation of benzothiophene using the Keggin-type lacunary polytungstophosphate as catalysts in emulsion. Journal of Molecular Catalysis A, 2010, 332, 59-64.	4.8	65
32	In Situ Spectroscopy of Water Oxidation at Ir Oxide Nanocluster Driven by Visible TiOCr Charge-transfer Chromophore in Mesoporous Silica. Journal of Physical Chemistry C, 2008, 112, 16156-16159.	3.1	63
33	Enhancement of Photocatalytic Water Oxidation Activity on IrO _{<i>x</i>} â^'ZnO/Zn _{2â^'<i>x</i>} GeO _{4â^'<i>x</i>â^'3<i>y</i>} N _{2<i>y Catalyst with the Solid Solution Phase Junction. Journal of Physical Chemistry C, 2010, 114, 12818-12822.</i>}	/8,/ii> <td>ж0</td>	ж0
34	Controlled Assembly of Hetero-binuclear Sites on Mesoporous Silica: Visible Light Charge-Transfer Units with Selectable Redox Properties. Journal of Physical Chemistry C, 2008, 112, 8391-8399.	3.1	58
35	Photocatalytic H2 and O2 evolution over tungsten oxide dispersed on silica. Journal of Catalysis, 2012, 293, 61-66.	6.2	51
36	Synergetic effect of dual cocatalysts in photocatalytic H ₂ production on Pd–IrO _x /TiO ₂ : a new insight into dual cocatalyst location. Physical Chemistry Chemical Physics, 2014, 16, 17734.	2.8	51

#	Article	IF	CITATIONS
37	Regulation of Ferroelectric Polarization to Achieve Efficient Charge Separation and Transfer in Particulate RuO ₂ /BiFeO ₃ for High Photocatalytic Water Oxidation Activity. Small, 2020, 16, e2003361.	10.0	51
38	Stable Hydrocarbon Diradical, An Analogue of Trimethylenemethane. Journal of the American Chemical Society, 2005, 127, 9014-9020.	13.7	48
39	A Novel Sr2CuInO3S p-type semiconductor photocatalyst for hydrogen production under visible light irradiation. Journal of Energy Chemistry, 2014, 23, 420-426.	12.9	47
40	Stable Potential Windows for Longâ€Term Electrocatalysis by Manganese Oxides Under Acidic Conditions. Angewandte Chemie, 2019, 131, 5108-5112.	2.0	44
41	Sr ₂ NiWO ₆ Double Perovskite Oxide as a Novel Visible-Light-Responsive Water Oxidation Photocatalyst. ACS Applied Materials & Interfaces, 2020, 12, 25938-25948.	8.0	44
42	Charge recombination reduction in dye-sensitized solar cells by depositing ultrapure TiO2 nanoparticles on "inert―BaTiO3 films. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2011, 176, 1115-1122.	3.5	42
43	Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays. ACS Applied Materials & Interfaces, 2016, 8, 30143-30151.	8.0	40
44	Visible light absorption of binuclear TiOCoII charge-transfer unit assembled in mesoporous silica. Microporous and Mesoporous Materials, 2007, 103, 265-272.	4.4	39
45	Improvement of Electrochemical Water Oxidation by Fineâ€Tuning the Structure of Tetradentate N ₄ Ligands of Molecular Copper Catalysts. ChemSusChem, 2017, 10, 4581-4588.	6.8	38
46	Sr ₂ CoTaO ₆ Double Perovskite Oxide as a Novel Visible-Light-Absorbing Bifunctional Photocatalyst for Photocatalytic Oxygen and Hydrogen Evolution Reactions. ACS Sustainable Chemistry and Engineering, 2020, 8, 14190-14197.	6.7	37
47	A Novel Double Perovskite Oxide Semiconductor Sr ₂ CoWO ₆ as Bifunctional Photocatalyst for Photocatalytic Oxygen and Hydrogen Evolution Reactions from Water under Visible Light Irradiation. Solar Rrl, 2020, 4, 1900456.	5.8	36
48	Hydrodesulfurization of 4,6-DMDBT on a multi-metallic sulfide catalyst with layered structure. Applied Catalysis A: General, 2011, 394, 18-24.	4.3	31
49	Influence of the Electrostatic Interaction between a Molecular Catalyst and Semiconductor on Photocatalytic Hydrogen Evolution Activity in Cobaloxime/CdS Hybrid Systems. ACS Applied Materials & Interfaces, 2017, 9, 23230-23237.	8.0	31
50	Exploration of the intrinsic factors limiting the photocurrent density in ferroelectric BiFeO ₃ thin film. Journal of Materials Chemistry A, 2020, 8, 6863-6873.	10.3	30
51	Photocatalysis in solar fuel production. National Science Review, 2015, 2, 145-147.	9.5	26
52	p-Type CaFe2O4 semiconductor nanorods controllably synthesized by molten salt method. Journal of Energy Chemistry, 2016, 25, 381-386.	12.9	26
53	La and Cr Co-doped SrTiO3 as an H2 evolution photocatalyst for construction of a Z-scheme overall water splitting system. Chinese Journal of Catalysis, 2018, 39, 421-430.	14.0	26
54	Stable Dye‧ensitized Solar Cells Based on Copper(II/I) Redox Mediators Bearing a Pentadentate Ligand. Angewandte Chemie - International Edition, 2021, 60, 16156-16163.	13.8	24

#	Article	IF	CITATIONS
55	A Yin-Yang hybrid co-catalyst (CoOx-Mo2N) for photocatalytic overall water splitting. Applied Catalysis B: Environmental, 2021, 298, 120491.	20.2	22
56	Intrinsic photocatalytic water oxidation activity of Mn-doped ferroelectric BiFeO3. Chinese Journal of Catalysis, 2021, 42, 945-952.	14.0	21
57	Transition metal (Ni, Fe, and Cu) hydroxides enhanced α-Fe ₂ O ₃ photoanode-based photofuel cell. RSC Advances, 2014, 4, 47383-47388.	3.6	19
58	Sustainability of Battery Technologies: Today and Tomorrow. ACS Sustainable Chemistry and Engineering, 2021, 9, 6507-6509.	6.7	16
59	Fine-tuning the coordination atoms of copper redox mediators: an effective strategy for boosting the photovoltage of dye-sensitized solar cells. Journal of Materials Chemistry A, 2019, 7, 12808-12814.	10.3	12
60	Unique Properties of RhCrO _{<i>x</i>} Cocatalyst Regulating Reactive Oxygen Species Formation in Photocatalytic Overall Water Splitting. ACS Sustainable Chemistry and Engineering, 2022, 10, 4059-4064.	6.7	8
61	Enhancing photoresponsivity of self-powered UV photodetectors based on electrochemically reduced TiO ₂ nanorods. RSC Advances, 2015, 5, 95939-95942.	3.6	7
62	The Evolution of ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 1-1.	6.7	6
63	Stable Dyeâ€Sensitized Solar Cells Based on Copper(II/I) Redox Mediators Bearing a Pentadentate Ligand. Angewandte Chemie, 2021, 133, 16292-16299.	2.0	6
64	Why Wasn't My <i>ACS Sustainable Chemistry & Engineering</i> Manuscript Sent Out for Review?. ACS Sustainable Chemistry and Engineering, 2019, 7, 1-2.	6.7	5
65	Expectations for Papers on Photochemistry, Photoelectrochemistry, and Electrochemistry for Energy Conversion and Storage in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 3038-3039.	6.7	4
66	Charge separation in mesoporous aluminosilicates. Research on Chemical Intermediates, 2008, 34, 551-564.	2.7	2
67	Simultaneous two-electron transfer from photoirradiated semiconductor to molecular catalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 355, 332-337.	3.9	2
68	Expectations for Manuscripts in ACS Sustainable Chemistry & Engineering: Scope Summary and Call for Creativity. ACS Sustainable Chemistry and Engineering, 2020, 8, 16046-16047.	6.7	2
69	Expectations for Manuscripts on Biomass Feedstocks and Processing in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 11031-11032.	6.7	2
70	<i>ACS Sustainable Chemistry & Engineering</i> Virtual Special Issue on Theories, Mechanisms, Materials, and Devices for Solar Energy Conversion. ACS Sustainable Chemistry and Engineering, 2019, 7, 10164-10164.	6.7	1
71	Photons at Play: Photocatalysis in Sustainable Chemistry. A Joint Virtual Special Issue by ACS Catalysis and ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 13125-13127.	6.7	1
72	Building Pathways to a Sustainable Planet. ACS Sustainable Chemistry and Engineering, 2022, 10, 1-2.	6.7	1

#	Article	IF	CITATIONS
73	Expectations for Perspectives in ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 16528-16530.	6.7	1
74	Rücktitelbild: Photocatalytic Overall Water Splitting Promoted by an α-βâ€phase Junction on Ga2O3(Angew. Chem. 52/2012). Angewandte Chemie, 2012, 124, 13356-13356.	2.0	0
75	Remembering Professor, Academician, and Editor Lina Zhang. ACS Sustainable Chemistry and Engineering, 2020, 8, 16385-16385.	6.7	Ο
76	The Changing Structure of Scientific Communication: Expanding the Nature of Letters Submissions to ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 8469-8470.	6.7	0