Chao Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3603244/publications.pdf

Version: 2024-02-01

26630 28297 11,599 123 56 105 h-index citations g-index papers 192 192 192 7654 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Bond Formations between Two Nucleophiles: Transition Metal Catalyzed Oxidative Cross-Coupling Reactions. Chemical Reviews, 2011, 111, 1780-1824.	47.7	1,767
2	Oxidative Coupling between Two Hydrocarbons: An Update of Recent C–H Functionalizations. Chemical Reviews, 2015, 115, 12138-12204.	47.7	926
3	Transition-metal catalyzed oxidative cross-coupling reactions to form C–C bonds involving organometallic reagents as nucleophiles. Chemical Society Reviews, 2011, 40, 2761.	38.1	425
4	Recent Advances of Transition-Metal Catalyzed Radical Oxidative Cross-Couplings. Accounts of Chemical Research, 2014, 47, 3459-3470.	15.6	324
5	External Oxidant-Free Oxidative Cross-Coupling: A Photoredox Cobalt-Catalyzed Aromatic C–H Thiolation for Constructing C–S Bonds. Journal of the American Chemical Society, 2015, 137, 9273-9280.	13.7	323
6	Olefinic C–H functionalization through radical alkenylation. Chemical Society Reviews, 2015, 44, 1070-1082.	38.1	301
7	Direct Functionalization of Tetrahydrofuran and 1,4â€Dioxane: Nickelâ€Catalyzed Oxidative C(sp ³)H Arylation. Angewandte Chemie - International Edition, 2013, 52, 4453-4456.	13.8	267
8	Copperâ€Catalyzed Radical/Radical CH/PH Crossâ€Coupling: αâ€Phosphorylation of Aryl Ketone <i>O</i> â€Acetyloximes. Angewandte Chemie - International Edition, 2015, 54, 6604-6607.	13.8	223
9	Palladiumâ€Catalyzed Aerobic Oxidative Direct Esterification of Alcohols. Angewandte Chemie - International Edition, 2011, 50, 5144-5148.	13.8	214
10	Revealing the metal-like behavior of iodine: an iodide-catalysed radical oxidative alkenylation. Chemical Communications, 2014, 50, 4496-4499.	4.1	209
11	Silver-Catalyzed Decarboxylative Radical Azidation of Aliphatic Carboxylic Acids in Aqueous Solution. Journal of the American Chemical Society, 2015, 137, 9820-9823.	13.7	199
12	Copperâ€Catalyzed Oxidative Coupling of Alkenes with Aldehydes: Direct Access to α,βâ€Unsaturated Ketones. Angewandte Chemie - International Edition, 2013, 52, 2256-2259.	13.8	195
13	Nickelâ€Catalyzed Heckâ€Type Alkenylation of Secondary and Tertiary αâ€Carbonyl Alkyl Bromides. Angewandte Chemie - International Edition, 2012, 51, 3638-3641.	13.8	178
14	Copper-catalysed oxidative C–H/C–H coupling between olefins and simple ethers. Chemical Communications, 2014, 50, 3623.	4.1	162
15	Transition-Metal-Assisted Radical/Radical Cross-Coupling: A New Strategy to the Oxidative C(sp ³)â€"H/Nâ€"H Cross-Coupling. Organic Letters, 2014, 16, 3404-3407.	4.6	152
16	Trisulfur Radical Anion as the Key Intermediate for the Synthesis of Thiophene via the Interaction between Elemental Sulfur and NaO <i>t</i> bu. Organic Letters, 2014, 16, 6156-6159.	4.6	147
17	Palladiumâ€Catalyzed Oxidative Double CH Functionalization/Carbonylation for the Synthesis of Xanthones. Angewandte Chemie - International Edition, 2012, 51, 5204-5207.	13.8	146
18	Solventâ€Enabled Radical Selectivities: Controlled Syntheses of Sulfoxides and Sulfides. Angewandte Chemie - International Edition, 2016, 55, 1094-1097.	13.8	145

#	Article	IF	CITATIONS
19	C–O Functionalization of α-Oxyboronates: A Deoxygenative <i>gem</i> -Diborylation and <i>gem</i> -Silylborylation of Aldehydes and Ketones. Journal of the American Chemical Society, 2017, 139, 5257-5264.	13.7	142
20	Palladiumâ€Catalyzed Oxidative Carbonylation of <i>N</i> â€Allylamines for the Synthesis of βâ€Lactams. Angewandte Chemie - International Edition, 2014, 53, 2443-2446.	13.8	133
21	Aryl Halide Tolerated Electrophilic Amination of Arylboronic Acids with <i>N</i> â€Chloroamides Catalyzed by CuCl at Room Temperature. Angewandte Chemie - International Edition, 2008, 47, 6414-6417.	13.8	128
22	Chloroacetateâ€Promoted Selective Oxidation of Heterobenzylic Methylenes under Copper Catalysis. Angewandte Chemie - International Edition, 2015, 54, 1261-1265.	13.8	124
23	Palladium/Copperâ€Catalyzed Oxidative CH Alkenylation/Nâ€Dealkylative Carbonylation of Tertiary Anilines. Angewandte Chemie - International Edition, 2013, 52, 10582-10585.	13.8	119
24	Covalently Bound Benzyl Ligand Promotes Selective Palladium atalyzed Oxidative Esterification of Aldehydes with Alcohols. Angewandte Chemie - International Edition, 2012, 51, 5662-5666.	13.8	113
25	Arylation of unactivated arenes. Dalton Transactions, 2010, 39, 10352.	3.3	109
26	From Anilines to Isatins: Oxidative Palladium atalyzed Double Carbonylation of CH Bonds. Angewandte Chemie - International Edition, 2015, 54, 1893-1896.	13.8	109
27	Construction of N-containing heterocycles via oxidative intramolecular N–H/X–H coupling. Chemical Communications, 2015, 51, 1394-1409.	4.1	109
28	Palladium atalyzed Regioselective Aerobic Oxidative CH/NH Carbonylation of Heteroarenes under Baseâ€Free Conditions. Chemistry - A European Journal, 2011, 17, 9581-9585.	3.3	108
29	Ni-Catalyzed Mild Arylation of α-Halocarbonyl Compounds with Arylboronic Acids. Organic Letters, 2007, 9, 5601-5604.	4.6	102
30	Cu(II)–Cu(I) Synergistic Cooperation to Lead the Alkyne C–H Activation. Journal of the American Chemical Society, 2014, 136, 16760-16763.	13.7	97
31	Direct oxidative esterification of alcohols. Dalton Transactions, 2014, 43, 13460-13470.	3.3	95
32	Transition-metal-free, room-temperature radical azidofluorination of unactivated alkenes in aqueous solution. Organic Chemistry Frontiers, 2014, 1, 100-104.	4 . 5	86
33	Nickel-Catalyzed Aromatic C–H Alkylation with Secondary or Tertiary Alkyl–Bromine Bonds for the Construction of Indolones. Organic Letters, 2013, 15, 6166-6169.	4.6	83
34	Revelation of the Difference between Arylzinc Reagents Prepared from Aryl Grignard and Aryllithium Reagents Respectively: Kinetic and Structural Features. Journal of the American Chemical Society, 2009, 131, 16656-16657.	13.7	77
35	I2-catalyzed oxidative C(sp3)–H/S–H coupling: utilizing alkanes and mercaptans as the nucleophiles. Chemical Communications, 2014, 50, 14386-14389.	4.1	76
36	Nickel-Catalyzed Selective Oxidative Radical Cross-Coupling: AnÂEffective Strategy for Inert Csp ³ â€"H Functionalization. Organic Letters, 2015, 17, 998-1001.	4.6	76

#	Article	IF	Citations
37	Silver-Catalyzed Decarboxylative Allylation of Aliphatic Carboxylic Acids in Aqueous Solution. Organic Letters, 2016, 18, 2188-2191.	4.6	76
38	NMP and O $<$ sub $>$ 2 $<$ /sub $>$ as Radical Initiator: Trifluoromethylation of Alkenes to Tertiary \hat{I}^2 -Trifluoromethyl Alcohols at Room Temperature. Organic Letters, 2015, 17, 6034-6037.	4.6	72
39	Synergistic Pd/Enamine Catalysis: A Strategy for the C–H/C–H Oxidative Coupling of Allylarenes with Unactivated Ketones. Organic Letters, 2014, 16, 3584-3587.	4.6	68
40	Oxidant controlled Pd-catalysed selective oxidation of primary alcohols. Chemical Communications, 2013, 49, 1324.	4.1	67
41	Fluoride atalyzed Esterification of Amides. Chemistry - A European Journal, 2018, 24, 3444-3447.	3.3	67
42	Dual Functionalization of αâ€Monoboryl Carbanions through Deoxygenative Enolization with Carboxylic Acids. Angewandte Chemie - International Edition, 2018, 57, 5501-5505.	13.8	67
43	Palladiumâ€Catalyzed CC Bond Formation To Construct 1,4â€Diketones under Mild Conditions. Angewandte Chemie - International Edition, 2011, 50, 7337-7341.	13.8	66
44	Fe-Catalysed oxidative C–H/N–H coupling between aldehydes and simple amides. Chemical Communications, 2014, 50, 4736.	4.1	66
45	Silver Migration Facilitates Isocyanide-Alkyne [3 + 2] Cycloaddition Reactions: Combined Experimental and Theoretical Study. ACS Catalysis, 2015, 5, 6640-6647.	11.2	66
46	Palladium-catalysed aerobic oxidative Heck-type alkenylation of Csp3â€"H for pyrrole synthesis. Chemical Communications, 2013, 49, 5853.	4.1	65
47	CO/Câ€H as an Acylating Reagent: A Palladiumâ€Catalyzed Aerobic Oxidative Carbonylative Esterification of Alcohols. Angewandte Chemie - International Edition, 2014, 53, 5657-5661.	13.8	61
48	Copper-catalysed oxidative Csp ³ –H methylenation to terminal olefins using DMF. Chemical Communications, 2014, 50, 7636-7638.	4.1	61
49	Aerobic C–N bond activation: a simple strategy to construct pyridines and quinolines. Chemical Communications, 2015, 51, 2286-2289.	4.1	60
50	Dioxygen-induced oxidative activation of a Pâ \in "H bond: radical oxyphosphorylation of alkenes and alkynes toward \hat{l}^2 -oxy phosphonates. Chemical Communications, 2016, 52, 12338-12341.	4.1	59
51	Carbonâ€Centered Radical Addition to OC of Amides or Esters as a Route to CO Bond Formations. Chemistry - A European Journal, 2014, 20, 15605-15610.	3.3	56
52	Stable isotope labeling assisted liquid chromatography–electrospray tandem mass spectrometry for quantitative analysis of endogenous gibberellins. Talanta, 2015, 144, 341-348.	5 . 5	54
53	Aminoazanium of DABCO: An Amination Reagent for Alkyl and Aryl Pinacol Boronates. Angewandte Chemie - International Edition, 2020, 59, 2745-2749.	13.8	53
54	Copper-/Cobalt-Catalyzed Highly Selective Radical Dioxygenation of Alkenes. Organic Letters, 2015, 17, 3402-3405.	4.6	50

#	Article	IF	CITATIONS
55	Oxidative cross S–H/S–H coupling: selective synthesis of unsymmetrical aryl tert-alkyl disulfanes. Organic Chemistry Frontiers, 2015, 2, 677-680.	4.5	49
56	Recent advances in mechanochemical C–H functionalization reactions. Tetrahedron Letters, 2018, 59, 317-324.	1.4	49
57	Easy access to enamides: a mild nickel-catalysed alkene isomerization of allylamides. Chemical Communications, 2013, 49, 7923.	4.1	48
58	Carbonâ€Centered Radical Addition to C=X Bonds for Câ^X Bond Formation. Chemistry - an Asian Journal, 2015, 10, 2040-2054.	3.3	47
59	Nickel-catalysed novel \hat{l}^2 , \hat{l}^3 -unsaturated nitrile synthesis. Chemical Communications, 2013, 49, 2442.	4.1	44
60	Synthesis of Secondary and Tertiary Alkyl Boronic Esters by ⟨i⟩gem⟨/i⟩â€Carboborylation: Carbonyl Compounds as Bis(electrophile) Equivalents. Angewandte Chemie - International Edition, 2018, 57, 10318-10322.	13.8	44
61	Chemodivergent transformations of amides using gem-diborylalkanes as pro-nucleophiles. Nature Communications, 2020, 11, 3113.	12.8	44
62	Synthesis of Fluoren-9-ones and Ladder-Type Oligo- <i>p</i> pli>-phenylene Cores via Pd-Catalyzed Carbonylative Multiple C–C Bond Formation. Organic Letters, 2015, 17, 2106-2109.	4.6	43
63	Nitrogen-doped graphene hydrogel-supported NiPt-CeO x nanocomposites and their superior catalysis for hydrogen generation from hydrazine at room temperature. Nano Research, 2017, 10, 2856-2865.	10.4	43
64	Bimetallic zinc complex – active species in coupling of terminal alkynes with aldehydes via nucleophilic addition/Oppenauer oxidation. Chemical Communications, 2015, 51, 576-579.	4.1	39
65	Transition-metal-free aerobic oxidation of primary alcohols to carboxylic acids. New Journal of Chemistry, 2013, 37, 1700.	2.8	38
66	Copperâ€Catalyzed Trifluoromethylationâ€Initiated Radical Oxidative Annulation toward Oxindoles. Asian Journal of Organic Chemistry, 2014, 3, 273-276.	2.7	38
67	Autoinductive thiolation/oxygenation of alkenes at room temperature. Organic Chemistry Frontiers, 2015, 2, 908-912.	4.5	38
68	Stereoselective Synthesis of Trisubstituted Vinylboronates from Ketone Enolates Triggered by 1,3â€Metalate Rearrangement of Lithium Enolates. Angewandte Chemie - International Edition, 2019, 58, 15813-15818.	13.8	38
69	O ₂ -mediated C(sp ²)â€"X bond oxygenation: autoxidative carbonâ€"heteroatom bond formation using activated alkenes as a linkage. RSC Advances, 2015, 5, 24494-24498.	3.6	37
70	lodine-catalyzed Câ \in "H/Sâ \in "H oxidative coupling: from 1,3-diketones and thiophenols to \hat{l}^2 -dicarbonyl thioethers. RSC Advances, 2015, 5, 41493-41496.	3.6	37
71	A Four-Component Reaction for the Synthesis of \hat{l}^2 -Quinoline Allylic Sulfones under Iron Catalysis. Journal of Organic Chemistry, 2018, 83, 10420-10429.	3.2	37
72	Recent advances in the borylative transformation of carbonyl and carboxyl compounds. Organic and Biomolecular Chemistry, 2019, 17, 6099-6113.	2.8	37

#	Article	IF	Citations
73	Acid-Promoted Cross-Dehydrative Aromatization for the Synthesis of Tetraaryl-Substituted Pyrroles. Organic Letters, 2016, 18, 56-59.	4.6	35
74	Tuning the Reactivity of Radical through a Triplet Diradical Cu(II) Intermediate in Radical Oxidative Cross-Coupling. Scientific Reports, 2015, 5, 15934.	3.3	34
75	Computational Investigation of the Role Played by Rhodium(V) in the Rhodium(III)â€Catalyzed <i>ortho</i> å€Bromination of Arenes. Chemistry - A European Journal, 2017, 23, 2690-2699.	3.3	32
76	Trifluoromethanesulfonic Acid Catalyzed Synergetic Oxidative/[3+2] Cyclization of Quinones with Olefins. Angewandte Chemie - International Edition, 2013, 52, 10195-10198.	13.8	31
77	Palladium catalysed \hat{I}^2 -selective oxidative Heck reaction of an electron-rich olefin. Chemical Communications, 2014, 50, 1110-1112.	4.1	31
78	Revealing the Ligand Effect on Copper(I) Disproportionation via Operando IR Spectra. Organometallics, 2015, 34, 206-211.	2.3	30
79	Cooperation between an alcoholic proton and boryl species in the catalytic <i>gem</i> -hydrodiborylation of carboxylic esters to access 1,1-diborylalkanes. Organic Chemistry Frontiers, 2019, 6, 900-907.	4.5	30
80	Alkynylation of \hat{l}_{\pm} -halocarbonyl compounds $\hat{a}\in$ a Stille-type cross-coupling for the formation of $C(sp)\hat{a}\in$ C(sp3) bonds under neutral conditions. Chemical Communications, 2007, , 2342-2344.	4.1	29
81	Concise synthesis of ketoallyl sulfones through an iron-catalyzed sequential four-component assembly. Green Chemistry, 2018, 20, 973-977.	9.0	29
82	Improved capillary electrophoresis frontal analysis by dynamically coating the capillary with polyelectrolyte multilayers. Journal of Chromatography A, 2012, 1238, 146-151.	3.7	28
83	Palladium-Catalyzed Direct Arylation of C–H Bond To Construct Quaternary Carbon Centers: The Synthesis of Diarylfluorene. Organic Letters, 2013, 15, 3102-3105.	4.6	28
84	Copper-catalyzed oxidative alkenylation of thioethers via Csp ³ â€"H functionalization. Organic and Biomolecular Chemistry, 2015, 13, 2264-2266.	2.8	28
85	Dinuclear versus mononuclear pathways in zinc mediated nucleophilic addition: a combined experimental and DFT study. Dalton Transactions, 2015, 44, 11165-11171.	3.3	26
86	Solventâ€Enabled Radical Selectivities: Controlled Syntheses of Sulfoxides and Sulfides. Angewandte Chemie, 2016, 128, 1106-1109.	2.0	25
87	Dual Functionalization of αâ€Monoboryl Carbanions through Deoxygenative Enolization with Carboxylic Acids. Angewandte Chemie, 2018, 130, 5599-5603.	2.0	25
88	Copper-catalyzed aerobic oxidative coupling: From ketone and diamine to pyrazine. Science Advances, 2015, 1, e1500656.	10.3	24
89	Novel \hat{l}_{\pm} -arylnitriles synthesis via Ni-catalyzed cross-coupling of \hat{l}_{\pm} -bromonitriles with arylboronic acids under mild conditions. Organic and Biomolecular Chemistry, 2011, 9, 5343.	2.8	23
90	Cu-catalyzed deoxygenative gem-hydroborylation of aromatic aldehydes and ketones to access benzylboronic esters. Chinese Journal of Catalysis, 2018, 39, 1725-1729.	14.0	23

#	Article	IF	CITATIONS
91	A pulp foam with highly improved physical strength, fire-resistance and antibiosis by incorporation of chitosan and CPAM. Carbohydrate Polymers, 2022, 278, 118963.	10.2	23
92	Revealing the halide effect on the kinetics of the aerobic oxidation of Cu(<scp>i</scp>) to Cu(<scp>ii</scp>). Chemical Communications, 2015, 51, 318-321.	4.1	21
93	Cuboid Ni ₂ P as a Bifunctional Catalyst for Efficient Hydrogen Generation from Hydrolysis of Ammonia Borane and Electrocatalytic Hydrogen Evolution. Chemistry - an Asian Journal, 2017, 12, 2967-2972.	3.3	21
94	Transmetalation of Ar ¹ ZnX with [Ar ² –Pd–X] is the rate-limiting step: kinetic insights from a live Pd-catalyzed Negishi coupling. Organic Chemistry Frontiers, 2014, 1, 50-53.	4.5	19
95	Nickel-catalyzed oxidative cross-coupling of arylboronic acids with olefins. Pure and Applied Chemistry, 2014, 86, 321-328.	1.9	19
96	Efficient palladium-catalyzed C(sp ⁾²)–H activation towards the synthesis of fluorenes. New Journal of Chemistry, 2016, 40, 9030-9033.	2.8	19
97	Iron-Catalyzed Deoxygenative Diborylation of Ketones to Internal <i>gem</i> -Diboronates. Chinese Journal of Organic Chemistry, 2019, 39, 3438.	1.3	19
98	A facile access for the C-N bond formation by transition metal-free oxidative coupling of benzylic C-H bonds and amides. Science China Chemistry, 2015, 58, 1323-1328.	8.2	18
99	α-C–H borylation of secondary alcohols <i>via</i> Ru/Fe relay catalysis: building a platform for alcoholic C–H/C–O functionalizations. Chemical Communications, 2019, 55, 11884-11887.	4.1	18
100	Highly efficient C–C cross-coupling for installing thiophene rings into π-conjugated systems. Organic Chemistry Frontiers, 2014, 1, 817-820.	4.5	15
101	Synthesis of Secondary and Tertiary Alkyl Boronic Esters by <i>gem</i> ê€Carboborylation: Carbonyl Compounds as Bis(electrophile) Equivalents. Angewandte Chemie, 2018, 130, 10475-10479.	2.0	15
102	Palladium-catalyzed aerobic (1+2) annulation of Csp ³ â€"H bonds with olefin for the synthesis of 3-azabicyclo[3.1.0]hex-2-ene. Chemical Communications, 2017, 53, 2294-2297.	4.1	14
103	Aminoazanium of DABCO: An Amination Reagent for Alkyl and Aryl Pinacol Boronates. Angewandte Chemie, 2020, 132, 2767-2771.	2.0	14
104	Halogenâ€Adjusted Chemoselective Synthesis of Fluorene Derivatives with Positionâ€Controlled Substituents. Chemistry - an Asian Journal, 2016, 11, 211-215.	3.3	13
105	Recent advances in the synthesis and transformation of <i>gem</i> -borylsilylalkanes. New Journal of Chemistry, 2021, 45, 14847-14854.	2.8	13
106	Transition-Metal-Catalyzed Oxidative Cross-Coupling Reactions. Synlett, 2010, 2010, 2527-2536.	1.8	12
107	Visible Light-Induced Radical Cyclization of Tertiary Bromides with Isonitriles To Construct Trifluoromethylated Quaternary Carbon Center. Journal of Organic Chemistry, 2018, 83, 14588-14599.	3.2	11
108	CO/Câ€H as an Acylating Reagent: A Palladiumâ€Catalyzed Aerobic Oxidative Carbonylative Esterification of Alcohols. Angewandte Chemie, 2014, 126, 5763-5767.	2.0	10

#	Article	IF	CITATIONS
109	Stereoselective Synthesis of Trisubstituted Vinylboronates from Ketone Enolates Triggered by 1,3â€Metalate Rearrangement of Lithium Enolates. Angewandte Chemie, 2019, 131, 15960-15965.	2.0	10
110	Trifluoromethanesulfonic Acid Catalyzed Synergetic Oxidative/[3+2] Cyclization of Quinones with Olefins. Angewandte Chemie, 2013, 125, 10385-10388.	2.0	9
111	Hetero diacylation of 1,1-diborylalkanes: Practical synthesis of 1,3-diketones. Chinese Chemical Letters, 2020, 31, 1911-1913.	9.0	9
112	Double Carbonylation Using Glyoxal (HCOCOH): A Practical Copperâ€Promoted Synthesis of Isatins from Primary and Secondary Anilines. Advanced Synthesis and Catalysis, 2017, 359, 3484-3489.	4.3	7
113	Drug Target Identification Using Affinity Coreâ€Shell Magnetic Nanoparticles and Mass Spectrometry. Chinese Journal of Chemistry, 2013, 31, 715-720.	4.9	6
114	Oxidative βâ€Csp ³ â^H Functionalization of <i>t</i> BuOH: A Selective Radical/Radical Crossâ€Coupling Access to βâ€Hydroxy Thioethers. Chemistry - an Asian Journal, 2016, 11, 2246-2249.	3.3	6
115	Synthesis of acridones through palladium-catalyzed carbonylative of 2-bromo-diarylamines. Tetrahedron Letters, 2018, 59, 2889-2892.	1.4	6
116	Deoxygenative Transformation of Carbonyl and Carboxyl Compounds Using gem-Diborylalkanes. Synlett, 2019, 30, 1105-1110.	1.8	6
117	Synthesis of Allylboronates via Zweifelâ€type Deprotonative Olefination. Advanced Synthesis and Catalysis, 2021, 363, 2403-2407.	4.3	5
118	Momentary click nitrile synthesis enabled by an aminoazanium reagent. Organic Chemistry Frontiers, 2022, 9, 3420-3427.	4.5	5
119	Enzyme Inhibitor Screening by CE with an On-Column Immobilized Enzyme Microreactor Created by an lonic Binding Technique. Methods in Molecular Biology, 2013, 984, 321-327.	0.9	3
120	Preparation of Durable Emitter of Electrospray Mass Spectrometry by Covalently Coating the Fusedâ€Silica Capillary Tip with Carbonâ€Nanotube Solâ€Gel Composite Material. Chinese Journal of Chemistry, 2014, 32, 293-297.	4.9	3
121	Reply to Correspondence on "Carbon entered Radical Addition to O=C of Amides or Esters as a Route to CⰒO Bond Formations― Chemistry - A European Journal, 2019, 25, 7768-7770.	3.3	3
122	Application of the EKE and LSE-UI Based Substructure Approach for Damage Detection with Limited Output Measurements. Advanced Materials Research, 2011, 255-260, 4171-4175.	0.3	0
123	Recent Advance of Ketones Synthesis from Carboxylic Esters. Chinese Journal of Organic Chemistry, 2022, 42, 1626.	1.3	0