Kamel Damak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3602387/publications.pdf

Version: 2024-02-01

471509 477307 29 822 17 29 h-index citations g-index papers 29 29 29 794 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	White light generation from Dy3+ doped tellurite glass. Journal of Quantitative Spectroscopy and Radiative Transfer, 2014, 134, 55-63.	2.3	101
2	Novel non-toxic and red luminescent sensor based on Eu3+:Y2Ti2O7/SiO2 nano-powder for latent fingerprint detection. Sensors and Actuators B: Chemical, 2015, 220, 162-170.	7.8	83
3	A new Navier-Stokes and Darcy's law combined model for fluid flow in crossflow filtration tubular membranes. Desalination, 2004, 161, 67-77.	8.2	82
4	Spectroscopic and luminescence characteristics of erbium doped TNZL glass for lasing materials. Journal of Alloys and Compounds, 2015, 620, 129-136.	5 . 5	63
5	Raman, green and infrared emission cross-sectionsof Er^3+ doped TZPPN tellurite glass. Optical Materials Express, 2014, 4, 597.	3.0	45
6	Thermal and spectroscopic properties of Tm3+ doped TZPPN transparent glass laser material. Journal of Non-Crystalline Solids, 2012, 358, 2974-2980.	3.1	38
7	Quantifying Raman and emission gain coefficients of Ho3+ doped TeO2·ZnO·PbO·PbF2·Na2O (TZPPN) tellurite glass. Solid State Sciences, 2014, 28, 74-80.	3. 2	36
8	Characterization of Tm3+ doped TNZL glass laser material. Journal of Luminescence, 2015, 161, 281-287.	3.1	36
9	Green and near infrared emission of Er3+ doped PZS and PZC glasses. Journal of Luminescence, 2018, 194, 706-712.	3.1	32
10	Spectroscopic analysis of trivalent Nd 3+ /Yb 3+ ions codoped in PZS host glasses as a new laser material at 1.06 \hat{l} 4m. Journal of Rare Earths, 2017, 35, 361-367.	4.8	31
11	Growth, optical spectroscopy and Judd–Ofelt analysis of Pr-doped BaY2F8 monocrystals. Journal of Luminescence, 2013, 143, 233-240.	3.1	30
12	Experimental and theoretical studies of Dy3+ doped alkaline earth aluminosilicate glasses. Journal of Luminescence, 2019, 212, 354-360.	3.1	30
13	Judd–Ofelt analysis and experimental spectroscopic study of erbium doped phosphate glasses. Journal of Luminescence, 2018, 201, 245-254.	3.1	27
14	Concentration polarisation in tubular membranes â€"a numerical approach. Desalination, 2005, 171, 139-153.	8.2	25
15	Tb3+ as a probe for the molecular structure of mixed barium magnesium alumino silicate glasses. Journal of Luminescence, 2018, 199, 384-390.	3.1	21
16	Thermal stability and UV–Vis-NIR spectroscopy of a new erbium-doped fluorotellurite glass. Philosophical Magazine, 2012, 92, 899-911.	1.6	20
17	Modeling of crossflow membrane separation processes under laminar flow conditions in tubular membrane. Desalination, 2004, 168, 231-239.	8.2	18
18	Optical absorption and photoluminescence properties of chromium in different host glasses. Journal of Luminescence, 2017, 186, 152-157.	3.1	18

#	Article	IF	Citations
19	Experimental and theoretical spectroscopic study of erbium doped aluminosilicate glasses. Journal of Luminescence, 2016, 176, 212-219.	3.1	16
20	Optical properties of peralkaline aluminosilicate glasses doped with Sm3+. Journal of Alloys and Compounds, 2019, 806, 1339-1347.	5 . 5	11
21	Pr ³⁺ :BaY ₂ F ₈ Crystal Nanoparticles (24 nm) Produced by High-Energy Ball Milling: Spectroscopic Characterization and Comparison with Bulk Properties. Journal of Physical Chemistry C, 2015, 119, 2844-2851.	3.1	9
22	Structure Prediction of Rare Earth Doped BaO and MgO Containing Aluminosilicate Glasses–the Model Case of Gd2O3. Materials, 2018, 11, 1790.	2.9	9
23	The Structure of Gd3+-Doped Li2O and K2O Containing Aluminosilicate Glasses from Molecular Dynamics Simulations. Materials, 2021, 14, 3265.	2.9	7
24	Luminescent Sm-doped aluminosilicate glass as a substrate for enhanced photoresponsivity of MoS2 based photodetector. Applied Surface Science, 2021, 565, 150342.	6.1	7
25	Étude rhéologique des jus de figue de Barbarie (<i>Opuntia</i> sp.) microfiltrés. Sciences Des Aliments, 2006, 26, 337-348.	0.2	7
26	Spectroscopic properties of Yb ²⁺ in aluminosilicate glass. International Journal of Applied Glass Science, 2017, 8, 322-328.	2.0	6
27	Thermal and Spectroscopic Properties of High Dense Optical Glasses TeO2–Bi2O3–WO3 (TBW) Doped with Er2O3 as Laser Material. Science of Advanced Materials, 2018, 10, 818-826.	0.7	6
28	Luminescence and Gamma Spectroscopy of Phosphate Glass Doped with Nd3+/Yb3+ and Their Multifunctional Applications. Photonics, 2022, 9, 406.	2.0	5
29	Characterization of oxyfluoride glasses doped with rare-earth ions through structural, thermal, and optical application thereof. Results in Physics, 2022, 34, 105255.	4.1	3