Hikari Sakaebe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3602384/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13–TFSI) – novel electrolyte base for Li battery. Electrochemistry Communications, 2003, 5, 594-598.	4.7	704
2	Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]â". Journal of Power Sources, 2006, 160, 1308-1313.	7.8	532
3	Preparation of room temperature ionic liquids based on aliphatic onium cations and asymmetric amide anions and their electrochemical properties as a lithium battery electrolyte. Journal of Power Sources, 2005, 146, 45-50.	7.8	401
4	Application of room temperature ionic liquids to Li batteries. Electrochimica Acta, 2007, 53, 1048-1054.	5.2	222
5	Rechargeable potassium-ion batteries with honeycomb-layered tellurates as high voltage cathodes and fast potassium-ion conductors. Nature Communications, 2018, 9, 3823.	12.8	190
6	LiCoO ₂ Degradation Behavior in the High-Voltage Phase Transition Region and Improved Reversibility with Surface Coating. Journal of the Electrochemical Society, 2017, 164, A6116-A6122.	2.9	181
7	Discharge–charge properties of Li/LiCoO2 cell using room temperature ionic liquids (RTILs) based on quaternary ammonium cation – Effect of the structure. Journal of Power Sources, 2005, 146, 693-697.	7.8	177
8	Application of nonflammable electrolyte with room temperature ionic liquids (RTILs) for lithium-ion cells. Journal of Power Sources, 2007, 174, 1021-1026.	7.8	157
9	The Influence of the Graphitic Structure on the Electrochemical Characteristics for the Anode of Secondary Lithium Batteries. Journal of the Electrochemical Society, 1995, 142, 716-720.	2.9	152
10	A two-compartment cell for using soluble benzoquinone derivatives as active materials in lithium secondary batteries. Electrochimica Acta, 2011, 56, 10145-10150.	5.2	117
11	Structure and Electrochemical Properties of LiFe[sub x]Mn[sub 2â^'x]O[sub 4] (0≤â‰0.5) Spinel as 5 V Electrode Material for Lithium Batteries. Journal of the Electrochemical Society, 2001, 148, A730.	2.9	116
12	Lithium intercalation behavior of iron cyanometallates. Journal of Power Sources, 1999, 81-82, 530-534.	7.8	102
13	Changes in the structure and physical properties of the solid solution LiNi1–xMnxO2 with variation in its composition. Journal of Materials Chemistry, 2003, 13, 590-595.	6.7	102
14	Preparation of AFeO2 (A = Li, Na) by hydrothermal method. Solid State Ionics, 1995, 79, 220-226.	2.7	92
15	Synthesis, Cation Distribution, and Electrochemical Properties of Fe-Substituted Li[sub 2]MnO[sub 3] as a Novel 4 V Positive Electrode Material. Journal of the Electrochemical Society, 2002, 149, A509.	2.9	92
16	All-Solid-State Lithium Secondary Battery with Li[sub 2]S–C Composite Positive Electrode Prepared by Spark-Plasma-Sintering Process. Journal of the Electrochemical Society, 2010, 157, A1196.	2.9	91
17	Effects of current densities on the lithium plating morphology at a lithium phosphorus oxynitride glass electrolyte/copper thin film interface. Journal of Power Sources, 2013, 233, 34-42.	7.8	91
18	Amorphous Metal Polysulfides: Electrode Materials with Unique Insertion/Extraction Reactions. Journal of the American Chemical Society, 2017, 139, 8796-8799.	13.7	84

#	Article	lF	CITATIONS
19	Electrochemical Properties of Hydrothermally Obtained LiCo[sub 1â^'x]Fe[sub x]O[sub 2] as a Positive Electrode Material for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2000, 147, 960.	2.9	77
20	Preparation of LiCoO2 and LiCo1â^'xFexO2 using hydrothermal reactions. Journal of Materials Chemistry, 1999, 9, 199-204.	6.7	75
21	Synthesis, phase relation and electrical and electrochemical properties of ruthenium-substituted Li2MnO3 as a novel cathode material. Journal of Power Sources, 2011, 196, 6934-6938.	7.8	75
22	Effect of Current Density on Morphology of Lithium Electrodeposited in Ionic Liquid-Based Electrolytes. Journal of the Electrochemical Society, 2014, 161, A1236-A1240.	2.9	75
23	Fine Li(4 ? x)/3Ti(2 ? 2x)/3FexO2 (0.18 ? x ? 0.67) powder with cubic rock-salt structure as a positive electrode material for rechargeable lithium batteries. Journal of Materials Chemistry, 2003, 13, 1747.	6.7	74
24	Observation of electrodeposited lithium by optical microscope in room temperature ionic liquid-based electrolyte. Journal of Power Sources, 2011, 196, 6663-6669.	7.8	74
25	Rock-salt-type lithium metal sulphides as novel positive-electrode materials. Scientific Reports, 2014, 4, 4883.	3.3	74
26	Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells. Journal of Power Sources, 2007, 174, 380-386.	7.8	73
27	In-situ scanning electron microscopy observations of Li plating and stripping reactions at the lithium phosphorus oxynitride glass electrolyte/Cu interface. Journal of Power Sources, 2013, 225, 245-250.	7.8	73
28	Mg2+ Storage in Organic Positive-electrode Active Material Based on 2,5-Dimethoxy-1,4-benzoquinone. Chemistry Letters, 2012, 41, 1594-1596.	1.3	71
29	Electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material modified by coating with Al2O3 nanoparticles. Journal of Power Sources, 2014, 269, 236-243.	7.8	70
30	Preparation of electrochemically active lithium sulfide–carbon composites using spark-plasma-sintering process. Journal of Power Sources, 2010, 195, 2928-2934.	7.8	68
31	Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells II. Journal of Power Sources, 2007, 174, 795-799.	7.8	65
32	Low Melting and Electrochemically Stable Ionic Liquids Based on Asymmetric Fluorosulfonyl(trifluoromethylsulfonyl)amide. Chemistry Letters, 2008, 37, 1020-1021.	1.3	65
33	Li de-intercalation mechanism in LiNiMnO cathode material for Li-ion batteries. Solid State Ionics, 2005, 176, 895-903.	2.7	62
34	Amorphous TiS4 positive electrode for lithium–sulfur secondary batteries. Electrochemistry Communications, 2013, 31, 71-75.	4.7	61
35	Preparation of lithium manganese oxides containing iron. Journal of Power Sources, 2001, 97-98, 415-419.	7.8	53
36	Effect of Organic Additives on Electrochemical Properties of Li Anode in Room Temperature Ionic Liquid. Journal of the Electrochemical Society, 2011, 158, A316.	2.9	48

#	Article	IF	CITATIONS
37	Sulfone-Based Electrolyte Solutions for Rechargeable Magnesium Batteries Using 2,5-Dimethoxy-1,4-benzoquinone Positive Electrode. Journal of the Electrochemical Society, 2014, 161, A1315-A1320.	2.9	47
38	Surface Structure and High-Voltage Charge/Discharge Characteristics of Al-Oxide Coated LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ Cathodes. Journal of the Electrochemical Society, 2015, 162, A3137-A3144.	2.9	47
39	Lithium Extraction and Insertion Behavior of Nanocrystalline Li[sub 2]TiO[sub 3]-LiFeO[sub 2] Solid Solution with Cubic Rock Salt Structure. Journal of the Electrochemical Society, 2003, 150, A638.	2.9	46
40	Bulk and surface structure investigation for the positive electrodes of degraded lithium-ion cell after storage test using X-ray absorption near-edge structure measurement. Journal of Power Sources, 2009, 189, 676-680.	7.8	46
41	Improvement of Cycle Capability of FeS ₂ Positive Electrode by Forming Composites with Li ₂ S for Ambient Temperature Lithium Batteries. Journal of the Electrochemical Society, 2011, 159, A75-A84.	2.9	46
42	Amorphous Niobium Sulfides as Novel Positive-Electrode Materials. ECS Electrochemistry Letters, 2014, 3, A79-A81.	1.9	46
43	Li+/Na+ exchange from α-NaFeO2 using hydrothermal reaction. Solid State Ionics, 1996, 90, 129-132.	2.7	43
44	Structural and electrochemical properties of Li(Fe, Co)xMn2 – xO4 solid solution as 5 V positive electrode materials for Li secondary batteries. Journal of Materials Chemistry, 2002, 12, 1882-1891.	6.7	43
45	Application of graphite–solid electrolyte composite anode in all-solid-state lithium secondary battery with Li2S positive electrode. Solid State Ionics, 2014, 262, 138-142.	2.7	40
46	The effects of preparation condition and dopant on the electrochemical property for Fe-substituted Li2MnO3. Journal of Power Sources, 2005, 146, 287-293.	7.8	38
47	Preparation of NiS[sub 2] Using Spark-Plasma-Sintering Process and Its Electrochemical Properties. Journal of the Electrochemical Society, 2008, 155, A679.	2.9	36
48	Gallium (III) sulfide as an active material in lithium secondary batteries. Journal of Power Sources, 2011, 196, 5631-5636.	7.8	36
49	Surface Structure and High-Voltage Charging/Discharging Performance of Low-Content Zr-Oxide-Coated LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ . Journal of the Electrochemical Society, 2016, 163, A75-A82.	2.9	36
50	Pressure-Stabilized Cubic Perovskite Oxyhydride BaScO ₂ H. Inorganic Chemistry, 2017, 56, 4840-4845.	4.0	36
51	X-ray absorption near-edge structure study on positive electrodes of degraded lithium-ion battery. Journal of Power Sources, 2011, 196, 6881-6883.	7.8	34
52	Analysis of hard carbon for lithium-ion batteries by hard X-ray photoelectron spectroscopy. Journal of Power Sources, 2013, 242, 844-847.	7.8	34
53	Electrochemical and magnetic properties of lithium manganese oxide spinels prepared by oxidation at low temperature of hydrothermally obtained LiMnO2. Solid State Ionics, 1996, 89, 53-63.	2.7	33
54	Stabilizing lithium plating-stripping reaction between a lithium phosphorus oxynitride glass electrolyte and copper thin film by platinum insertion. Journal of Power Sources, 2011, 196, 2135-2142.	7.8	33

Hikari Sakaebe

#	Article	IF	CITATIONS
55	Study of the Capacity Fading Mechanism for Fe-Substituted LiCoO[sub 2] Positive Electrode. Journal of the Electrochemical Society, 2004, 151, A672.	2.9	31
56	Ab Initio Simulations of Li/Pyrite-MS[sub 2] (M=Fe,â€,Ni) Battery Cells. Journal of the Electrochemical Society, 2010, 157, A630.	2.9	31
57	Antifluorite compounds, Li5+xFe1â^'xCoxO4, as a lithium intercalation host. Journal of Power Sources, 2005, 146, 21-26.	7.8	26
58	Characterization of the Surface of LiCoO ₂ Particles Modified by Al and Si Oxide Using Analytical TEM. Journal of the Electrochemical Society, 2013, 160, A2293-A2298.	2.9	26
59	Preparation of Li ₂ S-FeS <i>_x</i> Composite Positive Electrode Materials and Their Electrochemical Properties with Pre-Cycling Treatments. Journal of the Electrochemical Society, 2015, 162, A1745-A1750.	2.9	25
60	Rapid Preparation of Li2S-P2S5 Solid Electrolyte and Its Application for Graphite/Li2S All-Solid-State Lithium Secondary Battery. ECS Electrochemistry Letters, 2014, 3, A31-A35.	1.9	23
61	Synthesis and Electrochemical Properties of Li[sub 0.44]MnO[sub 2] as a Novel 4â€,V Cathode Material. Electrochemical and Solid-State Letters, 2005, 8, A554.	2.2	22
62	High Reversibility of "Soft―Electrode Materials in All-Solid-State Batteries. Frontiers in Energy Research, 2016, 4, .	2.3	22
63	Electrochemical characteristics of aluminum sulfide for use in lithium secondary batteries. Journal of Power Sources, 2010, 195, 8327-8330.	7.8	21
64	Characterization of Surface of LiCoO2Modified by Zr Oxides Using Analytical Transmission Electron Microscopy. Journal of the Electrochemical Society, 2014, 161, A1521-A1526.	2.9	21
65	A Reversible Rocksalt to Amorphous Phase Transition Involving Anion Redox. Scientific Reports, 2018, 8, 15086.	3.3	21
66	Degradation Mechanism of Conversion-Type Iron Trifluoride: Toward Improvement of Cycle Performance. ACS Applied Materials & Interfaces, 2019, 11, 30959-30967.	8.0	21
67	Structural characterization of an amorphous VS ₄ and its lithiation/delithiation behavior studied by solid-state NMR spectroscopy. RSC Advances, 2019, 9, 23979-23985.	3.6	21
68	Composite positive electrode based on amorphous titanium polysulfide for application in all-solid-state lithium secondary batteries. Solid State Ionics, 2014, 262, 143-146.	2.7	20
69	Analysis of the discharge/charge mechanism in VS4 positive electrode material. Solid State Ionics, 2018, 323, 32-36.	2.7	19
70	Discharge and Charge Characteristics of Amorphous FeOOH Including Aniline  ( aan â€â€‰FeOO of Preparation Conditions on Discharge and Charge Characteristics. Journal of the Electrochemical Society, 1995, 142, 360-365.	H )â€ 2.9	5‰: Influence 17
71	Characterization of MgO-coated-LiCoO2 particles by analytical transmission electron microscopy. Journal of Power Sources, 2016, 328, 161-166.	7.8	17
72	Capability and Reversibility of LiCoO ₂ during Charge/Discharge with O3/H1â^'3 Layered Structure Change. Journal of the Electrochemical Society, 2021, 168, 050517.	2.9	17

#	Article	IF	CITATIONS
73	Structural and electrochemical properties of Li0.44+xMn1â^'yTiyO2 as a novel 4V positive electrode material. Journal of Power Sources, 2007, 174, 1218-1223.	7.8	16
74	Neutron-scattering studies on carbon anode materials used in lithium-ion batteries. Applied Physics A: Materials Science and Processing, 2002, 74, s1028-s1030.	2.3	15
75	Synthesis and characterization of the crystal structure, the magnetic and the electrochemical properties of the new fluorophosphate LiNaFe[PO4]F. Dalton Transactions, 2012, 41, 11692.	3.3	15
76	EQCM study of Room Temperature Ionic Liquids Based on Perfluoroethyltrifluoroborate with and without Li[BF ₄]. Electrochemistry, 2005, 73, 633-635.	1.4	15
77	Improving Cycling Stability of Vanadium Sulfide (VS ₄) as a Li Battery Cathode Material Using a Localized High-Concentration Carbonate-Based Electrolyte. ACS Applied Energy Materials, 2021, 4, 13627-13635.	5.1	15
78	Modification of Nickel Sulfide by Surface Coating with TiO[sub 2] and ZrO[sub 2] for Improvement of Cycle Capability. Journal of the Electrochemical Society, 2009, 156, A958.	2.9	14
79	In-situ Optical Microscope Morphology Observation of Lithium Electrodeposited in Room Temperature Ionic Liquids Containing Aliphatic Quaternary Ammonium Cation. Electrochemistry, 2012, 80, 777-779.	1.4	14
80	Lithium analysis using reflection EELS for lithium compounds. Journal of Electron Spectroscopy and Related Phenomena, 2015, 203, 40-44.	1.7	14
81	Effective Bulk Activation and Interphase Stabilization of Silicon Negative Electrode by Lithium Pre-Doping for Next-Generation Batteries. Journal of the Electrochemical Society, 2019, 166, A5174-A5183.	2.9	14
82	Present status and future prospect for national project on lithium batteries. Journal of Power Sources, 1999, 81-82, 144-149.	7.8	13
83	Capacity fading mechanism of conversion-type FeF3 electrode: Investigation by electrochemical operando nuclear magnetic resonance spectroscopy. Journal of Power Sources, 2020, 477, 228772.	7.8	13
84	Structure and physical property changes of de-lithiated spinels for Li1.02â^'xMn1.98O4 after high-temperature storage. Solid State Ionics, 2003, 156, 309-318.	2.7	12
85	Preparation of Novel Electrode Materials Based on Lithium Niobium Sulfides. Electrochemistry, 2014, 82, 880-883.	1.4	12
86	Preparation of Li2S–FePS3 composite positive electrode materials and their electrochemical properties. Solid State Ionics, 2016, 288, 199-203.	2.7	12
87	Effects of Film Formation on the Electrodeposition of Lithium. ChemElectroChem, 2020, 7, 4336-4342.	3.4	12
88	Preparation of a FeOCl derivative with pyrrole and its performance as a cathode material in a secondary lithium battery system. Journal of Power Sources, 1995, 56, 165-169.	7.8	11
89	New fluorophosphate Li2â^'xNaxFe[PO4]F as cathode material for lithium ion battery. Journal of Power Sources, 2013, 244, 87-93.	7.8	11
90	Degradation Analysis of LiCoO ₂ Positive Electrode Material of a Li-Ion Battery Using the Li K-Edge Signal Obtained from STEM-EELS Measurements. E-Journal of Surface Science and Nanotechnology, 2015, 13, 284-288.	0.4	11

#	Article	IF	CITATIONS
91	Development of Li ₂ TiS ₃ –Li ₃ NbS ₄ by a mechanochemical process. Journal of the Ceramic Society of Japan, 2017, 125, 268-271.	1.1	11
92	Cubic Rocksalt Li ₂ SnS ₃ and a Solid Solution with Li ₃ NbS ₄ Prepared by Mechanochemical Synthesis. Electrochemistry, 2017, 85, 580-584.	1.4	11
93	Structure analyses of Fe-substituted Li2S-based positive electrode materials for Li-S batteries. Solid State Ionics, 2018, 320, 387-391.	2.7	11
94	New insight derived from a two-compartment cell: electrochemical behavior of FeF ₃ positive electrode. Chemical Communications, 2020, 56, 4878-4881.	4.1	11
95	Lithium Metal Negative Electrode for Batteries with High Energy Density: Lithium Utilization and Additives. Electrochemistry, 2020, 88, 463-467.	1.4	11
96	Application of FeOCl Derivative for a Secondary Lithium Battery: I . Discharge and Charge Characteristics of Amorphous Prepared by Ion Exchange Reaction of Including Aniline. Journal of the Electrochemical Society, 1991, 138, 2971-2975.	2.9	10
97	In Situ Morphology Observations of Electrodeposited Lithium in Room-Temperature Ionic Liquids by Optical Microscopy. Chemistry Letters, 2013, 42, 77-79.	1.3	10
98	High capacity all-solid-state lithium battery enabled by <i>in situ</i> formation of an ionic conduction path by lithiation of MgH ₂ . RSC Advances, 2022, 12, 10749-10754.	3.6	10
99	Application of FeOC1 derivatives as cathode materials for secondary lithium battery. Journal of Power Sources, 1992, 40, 291-298.	7.8	9
100	The Discharge and Charge Characteristics of FeOCl Modified by Aniline in Water. Journal of the Electrochemical Society, 1991, 138, 331-332.	2.9	8
101	Charge and Discharge Property of Li/LiCoO ₂ Cell Using Ionic Liquids Composed of N,N-Diethyl-N-Methyl-N-(2-Methoxyethyl)Ammonium and Fluorosulfonyl (Trifluoromethylsulfonyl) Amide. ECS Transactions, 2011, 33, 37-42.	0.5	8
102	Magnetic behavior of Fe nanoparticles driven by phase transition of FeF3. Journal of Alloys and Compounds, 2018, 769, 539-544.	5.5	8
103	Improvement of Cycle Capability of Fe-Substituted Li ₂ S-Based Positive Electrode Materials by Doping with Lithium Iodide. Journal of the Electrochemical Society, 2019, 166, A5231-A5236.	2.9	8
104	Application of FeOOH derivatives for a secondary lithium battery. Journal of Power Sources, 1993, 44, 627-634.	7.8	7
105	Cycleability of Ni–Fe hydroxides in nonaqueous electrolyte. Solid State Ionics, 1998, 113-115, 35-41.	2.7	7
106	Changes in the structure and physical properties of Li1?yNi0.5Mn0.4Ti0.1O2 (y=0 and 0.5). Solid State Ionics, 2004, 175, 221-224.	2.7	7
107	Role of the particle size of Fe nanoparticles in the capacity of FeF3 batteries. AIP Advances, 2019, 9, .	1.3	7
108	Improvement of Electrochemical Property of VS ₄ Electrode Material by Amorphization via Mechanical Milling Process. Electrochemistry, 2021, 89, 239-243.	1.4	7

#	Article	IF	CITATIONS
109	Electrochemical properties of FeOCl derivatives prepared by the reaction of FeOCl intercalated with 2,2-bithiophene and H2O. Solid State Ionics, 1995, 79, 234-238.	2.7	6
110	Na Li0.7â^'Ni1â^'Mn O2 as a new positive electrode material for lithium-ion batteries. Journal of Power Sources, 2016, 311, 103-110.	7.8	6
111	Electrochemical Properties and Deposition/Dissolution Behavior of Li Metal Negative Electrode in VS ₄ /Li Battery. Electrochemistry, 2021, 89, 167-175.	1.4	6
112	Application of FeOCl Derivatives for a Secondary Lithium Battery: III . Electrochemical Reaction and Physical State of Reaction Product of with Aniline in Water. Journal of the Electrochemical Society, 1995, 142, 2126-2131.	2.9	5
113	Synthesis, crystal structure and electrochemical properties of the manganese-doped LiNaFe[PO4]F materials. Materials Chemistry and Physics, 2013, 141, 52-57.	4.0	5
114	REELS study of a LiNi _{1/3} Mn _{1/3} Co _{1/3} O ₂ positive electrode. Surface and Interface Analysis, 2016, 48, 1144-1147.	1.8	5
115	Improvement of Cycle Capability of VS ₄ by Addition of Phosphorus Element. Electrochemistry, 2021, 89, 273-278.	1.4	5
116	Transport Properties of Electrolyte Solution Comprising LiPF ₆ , Ethylene Carbonate, and Propylene Carbonate. Electrochemistry, 2021, 89, 439-446.	1.4	5
117	Stable Lithium Metal Plating/Stripping in a Localized High-Concentration Cyclic Carbonate-Based Electrolyte. Electrochemistry, 2022, 90, 047001-047001.	1.4	5
118	Structural and dynamic behavior of lithium iron polysulfide Li 8 FeS 5 during charge–discharge cycling. Journal of Power Sources, 2018, 398, 67-74.	7.8	4
119	Improvement of Cycling Capability of Li2S-FeS Composite Positive Electrode Materials by Surface Coating With Titanium Oxide. Frontiers in Energy Research, 2019, 7, .	2.3	4
120	Development of a half-cell for x-ray structural analysis of liquid electrolytes in rechargeable batteries. Review of Scientific Instruments, 2020, 91, 033907.	1.3	4
121	Degradation mechanisms of lithium sulfide (Li ₂ S) composite cathode in carbonate electrolyte and improvement by increasing electrolyte concentration. Sustainable Energy and Fuels, 2021, 5, 1714-1726.	4.9	4
122	Changes in the structure and magnetic properties of Li1.08Mn1.92O4 after charge?discharge cycles with a 18650-type cylindrical battery. Solid State Ionics, 2004, 175, 229-232.	2.7	3
123	Synthesis and electrochemical properties of Li2/3Ni1/3Mn2/3O2 as a novel 5 V class positive electrode material for lithium-ion batteries. Journal of Power Sources, 2016, 304, 60-63.	7.8	3
124	First-principles calculations of the atomic structure and electronic states of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Li</mml:mi><mml:m Physical Review B, 2019, 100, .</mml:m </mml:msub></mml:mrow></mml:math 	>x3.þmml:	mi s
125	Analysis of LiCoO2 electrodes through principal component analysis of current–voltage datacubes measured using atomic force microscopy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, 012402.	1.2	3
126	Elucidation of discharge–charge reaction mechanism of FeF2 cathode aimed at efficient use of conversion reaction for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2022, 920, 116577.	3.8	3

#	Article	IF	CITATIONS
127	Structure and electrical properties of Sr0.5Ca0.5VOy. Solid State Ionics, 1998, 108, 327-332.	2.7	2
128	Lithium-Sulfur Batteries. , 2014, , 1197-1201.		2
129	Lithium analysis in Liâ€ion battery materials via a scanning electron microscopyâ€based approach. Surface and Interface Analysis, 2020, 52, 335-338.	1.8	2
130	Structural Variation in Carbonate Electrolytes by the Addition of Li Salts Studied by Xâ€Ray Total Scattering. Physica Status Solidi (B): Basic Research, 2020, 257, 2000100.	1.5	2
131	Development of an Evaluation Method for a Lithium/Electrolyte Interface Based on X-ray Reflectivity and Grazing Incidence X-ray Scattering Measurements. Chemistry Letters, 2021, 50, 1526-1529.	1.3	2
132	Reversible lithium insertion and conversion process of amorphous VS4 revealed by operando electrochemical NMR spectroscopy. Solid State Ionics, 2022, 380, 115920.	2.7	2
133	A Bicontinuous Nanostructure Induced in Lithiated Iron Fluoride Electrodes of Lithium-ion Batteries Investigated by Small-Angle X-ray Scattering. Electrochemistry, 2022, 90, 077007-077007.	1.4	2
134	Preparation of Lithium Sulfide-Carbon Composites Using Spark-Plasma-Sintering Process and their Electrochemical Properties. Materials Science Forum, 2010, 638-642, 2184-2188.	0.3	1
135	Characterization of Na _x Li _{0.67+y} Ni _{0.33} Mn _{0.67} O ₂ as a positive electrode material for lithium-ion batteries. RSC Advances, 2018, 8, 26335-26340.	3.6	1
136	Enhancing the Cyclability of VS ₄ Positive Electrode in Carbonateâ€Based Electrolyte using Fluoroethylene Carbonate Additive. Batteries and Supercaps, 2022, 5, .	4.7	1
137	Eldfellite-type cathode material, NaV(SO ₄) ₂ , for Na-ion batteries. Materials Advances, 2022, 3, 6993-7001.	5.4	1
138	Anion Redox in an Amorphous Titanium Polysulfide. ACS Applied Materials & Interfaces, 2022, 14, 33191-33199.	8.0	1
139	Physical Property Change of FeOOH (  AD  ) 1 / 4 during Lithium Insertion a Electrochemical Society, 1996, 143, 2713-2717.	nd Extract 2.9	ion, Journal o
140	Application of Ionic Liquids to Li Batteries. , 2005, , 171-186.		0
141	B13-P-09Analysis of Lithium compounds using Li K-edge reflection EELS. Microscopy (Oxford, England), 2015, 64, i97.1-i97.	1.5	0
142	Effect of vanadium substitution in LixFeF3 by first-principles calculations. AIP Advances, 2021, 11, 025218.	1.3	0
143	Energy Storage Technology in AIST; The Background of the Diversity. ECS Meeting Abstracts, 2019, , .	0.0	0
144	Degradation Analysis of FeF3 Positive Electrode Using Two-Compartment Type Cell. ECS Meeting Abstracts, 2019, , .	0.0	0

#	Article	IF	CITATIONS
145	Electrodeposition of Lithium in LiPF6-Based Electrolyte with Trace-Amount of Water. ECS Meeting Abstracts, 2019, , .	0.0	0
146	(Plenary) Challenge for Innovation of Li-S Battery System. ECS Meeting Abstracts, 2019, , .	0.0	0
147	(Invited) From Intercalation/Insertion to Conversion Mechanism; Efforts for Increasing Energy. ECS Meeting Abstracts, 2019, , .	0.0	0
148	Structural Characterization of Amorphous VS4 and Its Amorphous Phase Transformation during Liinsertion. ECS Meeting Abstracts, 2020, MA2020-01, 339-339.	0.0	0
149	Effect of Li Ratio in Li-Naphthalenide Solution on Li Pre-Doping to Si Negative Electrode for Next-Generation Batteries. ECS Meeting Abstracts, 2021, MA2021-02, 93-93.	0.0	0
150	Enhancing Cycle Stability of Li/VS4 Batteries with Localized High-Concentration Carbonate-Based Electrolytes. ECS Meeting Abstracts, 2021, MA2021-02, 107-107.	0.0	0
151	Study on Li Pre-Doping Technique with Li-Naphthalene Solutions Toward Si Negative Electrode for Next-Generation Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 410-410.	0.0	0
152	Development of an Electrochemical Cell for In Operando Characterization of Lithium/Electrolyte Interface Using Xâ€Ray Total Reflection. Physica Status Solidi (B): Basic Research, 2022, 259, .	1.5	0
153	Identification of Soluble Degradation Products in Lithium–Sulfur and Lithium-Metal Sulfide Batteries. Separations, 2022, 9, 57.	2.4	0
154	Structural Characterization of Amorphous VS ₄ and Its Amorphous Phase Transformation during Li Insertion. ECS Meeting Abstracts, 2020, MA2020-02, 441-441.	0.0	0