
Kate M Selway

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/360210/publications.pdf Version: 2024-02-01

KATE M SELWAY

#	Article	IF	CITATIONS
1	Probing the Southern African Lithosphere With Magnetotellurics: 2. Linking Electrical Conductivity, Composition, and Tectonomagmatic Evolution. Journal of Geophysical Research: Solid Earth, 2022, 127,	3.4	10
2	Probing the Southern African Lithosphere With Magnetotellurics—Part I: Model Construction. Journal of Geophysical Research: Solid Earth, 2022, 127, .	3.4	3
3	Thermochemical structure and evolution of cratonic lithosphere in central and southern Africa. Nature Geoscience, 2022, 15, 405-410.	12.9	12
4	Electrical conductivity of the lithosphere-asthenosphere system. Physics of the Earth and Planetary Interiors, 2021, 313, 106661.	1.9	10
5	Are Xenoliths From Southwestern Kaapvaal Craton Representative of the Broader Mantle? Constraints From Magnetotelluric Modeling. Geophysical Research Letters, 2021, 48, e2021GL092570.	4.0	12
6	MATE: An Analysis Tool for the Interpretation of Magnetotelluric Models of the Mantle. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC009126.	2.5	23
7	Magnetotelluric Constraints on the Temperature, Composition, Partial Melt Content, and Viscosity of the Upper Mantle Beneath Svalbard. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC008985.	2.5	9
8	The uppermost mantle seismic velocity structure of West Antarctica from Rayleigh wave tomography: Insights into tectonic structure and geothermal heat flow. Earth and Planetary Science Letters, 2019, 522, 219-233.	4.4	18
9	Utilising 3-D magnetotelluric models of southern African mantle to constrain hydrogen content and compositional variations ASEG Extended Abstracts, 2019, 2019, 1-3.	0.1	0
10	Upper Mantle Melt Distribution From Petrologically Constrained Magnetotellurics. Geochemistry, Geophysics, Geosystems, 2019, 20, 3328-3346.	2.5	19
11	A small, unextractable melt fraction as the cause for the low velocity zone. Earth and Planetary Science Letters, 2019, 517, 117-124.	4.4	27
12	MT conductivity signatures of mineral systems: 3D MT over the Eastern Goldfields Super Terrane, Yilgarn Craton. ASEG Extended Abstracts, 2019, 2019, 1-2.	0.1	0
13	Magnetotelluric evidence for massive sulphide mineralization in intruded sediments of the outer VÂ,ring Basin, mid-Norway. Tectonophysics, 2017, 706-707, 196-205.	2.2	14
14	The uppermost mantle seismic velocity and viscosity structure of central West Antarctica. Earth and Planetary Science Letters, 2017, 472, 38-49.	4.4	29
15	Constraints on volumes and patterns of asthenospheric melt from the spaceâ€ŧime distribution of seamounts. Geophysical Research Letters, 2017, 44, 7203-7210.	4.0	8
16	Uplift of the central transantarctic mountains. Nature Communications, 2017, 8, 1588.	12.8	42
17	Surface wave imaging of the weakly extended Malawi Rift from ambient-noise and teleseismic Rayleigh waves from onshore and lake-bottom seismometers. Geophysical Journal International, 2017, 209, 1892-1905.	2.4	42
18	Acquisition of a Unique Onshore/Offshore Geophysical and Geochemical Dataset in the Northern Malawi (Nyasa) Rift. Seismological Research Letters, 2016, 87, 1406-1416.	1.9	28

KATE M SELWAY

#	Article	IF	CITATIONS
19	Magnetotelluric investigation of the Vestfold Hills and Rauer Group, East Antarctica. Journal of Geophysical Research: Solid Earth, 2016, 121, 2258-2273.	3.4	17
20	Thick lithosphere, deep crustal earthquakes and no melt: a triple challenge to understanding extension in the western branch of the East African Rift. Geophysical Journal International, 2016, 204, 985-998.	2.4	24
21	Negligible effect of hydrogen content on plate strength in East Africa. Nature Geoscience, 2015, 8, 543-546.	12.9	35
22	The seismic mid-lithosphere discontinuity. Earth and Planetary Science Letters, 2015, 414, 45-57.	4.4	177
23	On the Causes of Electrical Conductivity Anomalies in Tectonically Stable Lithosphere. Surveys in Geophysics, 2014, 35, 219-257.	4.6	174
24	Water content of the Tanzanian lithosphere from magnetotelluric data: Implications for cratonic growth and stability. Earth and Planetary Science Letters, 2014, 388, 175-186.	4.4	56
25	A simple 2-D explanation for negative phases in TE magnetotelluric data. Geophysical Journal International, 2012, 188, 945-958.	2.4	22
26	Identifying the lithospheric structure of a Precambrian orogen using magnetotellurics: The Capricorn Orogen, Western Australia. Precambrian Research, 2009, 168, 185-196.	2.7	22
27	Magnetotelluric constraints on subduction polarity: Reversing reconstruction models for Proterozoic Australia. Geology, 2009, 37, 799-802.	4.4	45
28	A 3D lithospheric electrical resistivity model of the Gawler Craton, Southern Australia. Transactions of the Institution of Mining and Metallurgy Section B-Applied Earth Science, 2007, 116, 13-21.	0.8	9
29	Two-dimensional Magnetotelluric Analysis of Three-dimensional Bodies: a Case Study From South Australia, Exploration Geophysics, 2006, 37, 231-238.	1.1	0