
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3602028/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Arrested crossover precursor structures form stable homologous bonds in a Tetrahymena meiotic mutant. PLoS ONE, 2022, 17, e0263691.	2.5	2
2	Discussion of the Brazilian neurologists about sudden unexpected death in epilepsy. Revista Da Associação Médica Brasileira, 2022, 68, 675-679.	0.7	1
3	Tetrahymena meiosis: Simple yet ingenious. PLoS Genetics, 2021, 17, e1009627.	3.5	22
4	The Transmembrane Protein Semi1 Positions Gamete Nuclei for Reciprocal Fertilization in Tetrahymena. IScience, 2020, 23, 100749.	4.1	5
5	Spatial constraints on chromosomes are instrumental to meiotic pairing. Journal of Cell Science, 2020, 133, .	2.0	12
6	Non-coding RNA Transcription in Tetrahymena Meiotic Nuclei Requires Dedicated Mediator Complex-Associated Proteins. Current Biology, 2019, 29, 2359-2370.e5.	3.9	9
7	A specialized condensin complex participates in somatic nuclear maturation in <i>Tetrahymena thermophila</i> . Molecular Biology of the Cell, 2019, 30, 1326-1338.	2.1	8
8	An MCM family protein promotes interhomolog recombination by preventing precocious intersister repair of meiotic DSBs. PLoS Genetics, 2019, 15, e1008514.	3.5	6
9	Condensins promote chromosome individualization and segregation during mitosis, meiosis, and amitosis in <i>Tetrahymena thermophila</i> . Molecular Biology of the Cell, 2018, 29, 466-478.	2.1	15
10	A chromatin-associated protein required for inducing and limiting meiotic DNA double-strand break formation. Nucleic Acids Research, 2018, 46, 11822-11834.	14.5	17
11	A streamlined cohesin apparatus is sufficient for mitosis and meiosis in the protist Tetrahymena. Chromosoma, 2018, 127, 421-435.	2.2	11
12	Resistance to 6-Methylpurine is Conferred by Defective Adenine Phosphoribosyltransferase in Tetrahymena. Genes, 2018, 9, 179.	2.4	4
13	A Zip3-like protein plays a role in crossover formation in the SC-less meiosis of the protist <i>Tetrahymena</i> . Molecular Biology of the Cell, 2017, 28, 825-833.	2.1	16
14	BIME2, a novel gene required for interhomolog meiotic recombination in the protist model organism Tetrahymena. Chromosome Research, 2017, 25, 291-298.	2.2	4
15	Post-meiotic DNA double-strand breaks occur in Tetrahymena, and require Topoisomerase II and Spo11. ELife, 2017, 6, .	6.0	31
16	DNA double-strand break formation and repair in Tetrahymena meiosis. Seminars in Cell and Developmental Biology, 2016, 54, 126-134.	5.0	19
17	Conservation and Variability of Meiosis Across the Eukaryotes. Annual Review of Genetics, 2016, 50, 293-316.	7.6	96
18	Exo1 and Mre11 execute meiotic DSB end resection in the protist Tetrahymena. DNA Repair, 2015, 35, 137-143.	2.8	16

#	Article	IF	CITATIONS
19	Surprising Genetic Diversity inRhinolophus luctus(Chiroptera: Rhinolophidae) from Peninsular Malaysia: Description of a New Species Based on Genetic and Morphological Characters. Acta Chiropterologica, 2015, 17, 1-20.	0.6	18
20	Meiosis Gene Inventory of Four Ciliates Reveals the Prevalence of a Synaptonemal Complex-Independent Crossover Pathway. Molecular Biology and Evolution, 2014, 31, 660-672.	8.9	32
21	Msh4 and Msh5 Function in SC-Independent Chiasma Formation During the Streamlined Meiosis of <i>Tetrahymena</i> . Genetics, 2014, 198, 983-993.	2.9	33
22	The Hidden Talents of SPO11. Developmental Cell, 2013, 24, 123-124.	7.0	4
23	A Single Cohesin Complex Performs Mitotic and Meiotic Functions in the Protist Tetrahymena. PLoS Genetics, 2013, 9, e1003418.	3.5	32
24	Mus81 nuclease and Sgs1 helicase are essential for meiotic recombination in a protist lacking a synaptonemal complex. Nucleic Acids Research, 2013, 41, 9296-9309.	14.5	29
25	The <i>Tetrahymena</i> meiotic chromosome bouquet is organized by centromeres and promotes interhomolog recombination. Journal of Cell Science, 2012, 125, 5873-5880.	2.0	36
26	Mug20, a novel protein associated with linear elements in fission yeast meiosis. Current Genetics, 2012, 58, 119-127.	1.7	27
27	The Recombinases Rad51 and Dmc1 Play Distinct Roles in DNA Break Repair and Recombination Partner Choice in the Meiosis of Tetrahymena. PLoS Genetics, 2011, 7, e1001359.	3.5	54
28	A New Thermosensitive smc-3 Allele Reveals Involvement of Cohesin in Homologous Recombination in C. elegans. PLoS ONE, 2011, 6, e24799.	2.5	17
29	SUMOylation is required for normal development of linear elements and wild-type meiotic recombination in Schizosaccharomyces pombe. Chromosoma, 2010, 119, 59-72.	2.2	30
30	MRE11 and COM1/SAE2 are required for double-strand break repair and efficient chromosome pairing during meiosis of the protist Tetrahymena. Chromosoma, 2010, 119, 505-518.	2.2	42
31	Roles of Hop1 and Mek1 in Meiotic Chromosome Pairing and Recombination Partner Choice in <i>Schizosaccharomyces pombe</i> . Molecular and Cellular Biology, 2010, 30, 1570-1581.	2.3	45
32	Mutations in <i>Caenorhabditis elegans him-19</i> Show Meiotic Defects That Worsen with Age. Molecular Biology of the Cell, 2010, 21, 885-896.	2.1	24
33	<i>Tetrahymena</i> Meiotic Nuclear Reorganization Is Induced by a Checkpoint Kinase–dependent Response to DNA Damage. Molecular Biology of the Cell, 2009, 20, 2428-2437.	2.1	46
34	Analysis of Schizosaccharomyces pombe Meiosis by Nuclear Spreading. Methods in Molecular Biology, 2009, 558, 15-36.	0.9	17
35	DNA double-strand breaks, but not crossovers, are required for the reorganization of meiotic nuclei in Tetrahymena. Journal of Cell Science, 2008, 121, 2148-2158.	2.0	59
36	Study of an RNA helicase implicates small RNA–noncoding RNA interactions in programmed DNA elimination in <i>Tetrahymena</i> . Genes and Development, 2008, 22, 2228-2241.	5.9	118

#	Article	IF	CITATIONS
37	The Rad52 Homologs Rad22 and Rti1 of <i>Schizosaccharomyces pombe</i> Are Not Essential for Meiotic Interhomolog Recombination, but Are Required for Meiotic Intrachromosomal Recombination and Mating-Type-Related DNA Repair. Genetics, 2008, 178, 2399-2412.	2.9	24
38	<i>Caenorhabditis elegans prom-1</i> Is Required for Meiotic Prophase Progression and Homologous Chromosome Pairing. Molecular Biology of the Cell, 2007, 18, 4911-4920.	2.1	34
39	The Nuclear Envelope Protein Matefin/SUN-1 Is Required for Homologous Pairing in C. elegans Meiosis. Developmental Cell, 2007, 12, 873-885.	7.0	166
40	A conserved function for a Caenorhabditis elegans Com1/Sae2/CtIP protein homolog in meiotic recombination. EMBO Journal, 2007, 26, 5071-5082.	7.8	94
41	S. pombe linear elements: the modest cousins of synaptonemal complexes. Chromosoma, 2006, 115, 260-271.	2.2	69
42	Meiotic recombination proteins localize to linear elements in Schizosaccharomyces pombe. Chromosoma, 2006, 115, 330-340.	2.2	73
43	Linear Element-Independent Meiotic Recombination in Schizosaccharomyces pombe. Genetics, 2006, 174, 1105-1114.	2.9	13
44	Yeast Nuclear Envelope Subdomains with Distinct Abilities to Resist Membrane Expansion. Molecular Biology of the Cell, 2006, 17, 1768-1778.	2.1	88
45	Partner Choice during Meiosis Is Regulated by Hop1-promoted Dimerization of Mek1. Molecular Biology of the Cell, 2005, 16, 5804-5818.	2.1	231
46	Differential Activation of M26-Containing Meiotic Recombination Hot Spots in Schizosaccharomyces pombe. Genetics, 2005, 170, 95-106.	2.9	15
47	Meiotic telomere clustering requires actin for its formation and cohesin for its resolution. Journal of Cell Biology, 2005, 170, 213-223.	5.2	139
48	Organization and pairing of meiotic chromosomes in the ciliate Tetrahymena thermophila. Journal of Cell Science, 2004, 117, 5791-5801.	2.0	81
49	Targeted Gene Knockout Reveals a Role in Meiotic Recombination for ZHP-3, a Zip3-Related Protein in Caenorhabditis elegans. Molecular and Cellular Biology, 2004, 24, 7998-8006.	2.3	110
50	S. pombe meiotic linear elements contain proteins related to synaptonemal complex components. Journal of Cell Science, 2004, 117, 3343-3351.	2.0	108
51	Behaviour of nucleolus organizing regions (NORs) and nucleoli during mitotic and meiotic divisions in budding yeast. Chromosome Research, 2004, 12, 427-438.	2.2	57
52	Genetic and cytological characterization of the recombination protein RAD-51 in Caenorhabditis elegans. Chromosoma, 2003, 112, 6-16.	2.2	222
53	Chromosomes of the budding yeast Saccharomyces cerevisiae. International Review of Cytology, 2003, 222, 141-196.	6.2	25
54	The Caenorhabditis elegans SCC-3 homologue is required for meiotic synapsis and for proper chromosome disjunction in mitosis and meiosis. Experimental Cell Research, 2003, 289, 245-255.	2.6	46

#	Article	IF	CITATIONS
55	Chromosome Pairing Does Not Contribute to Nuclear Architecture in Vegetative Yeast Cells. Eukaryotic Cell, 2003, 2, 856-866.	3.4	34
56	Increased ploidy and KAR3 and SIR3 disruption alter the dynamics of meiotic chromosomes and telomeres. Journal of Cell Science, 2003, 116, 2431-2442.	2.0	24
57	The Mus81/Mms4 Endonuclease Acts Independently of Double-Holliday Junction Resolution to Promote a Distinct Subset of Crossovers During Meiosis in Budding Yeast. Genetics, 2003, 164, 81-94.	2.9	346
58	Spatial organisation and behaviour of the parental chromosome sets in the nuclei of Saccharomyces cerevisiae × S. paradoxus hybrids. Journal of Cell Science, 2002, 115, 3829-3835.	2.0	29
59	The Aurora B Kinase AIR-2 Regulates Kinetochores during Mitosis and Is Required for Separation of Homologous Chromosomes during Meiosis. Current Biology, 2002, 12, 798-812.	3.9	220
60	Chromosome associations in budding yeast caused by integrated tandemly repeated transgenes. Journal of Cell Science, 2002, 115, 1213-1220.	2.0	29
61	A <i>Caenorhabditis elegans</i> cohesion protein with functions in meiotic chromosome pairing and disjunction. Genes and Development, 2001, 15, 1349-1360.	5.9	304
62	The Saccharomyces cerevisiae MUM2 Gene Interacts With the DNA Replication Machinery and Is Required for Meiotic Levels of Double Strand Breaks. Genetics, 2001, 157, 1179-1189.	2.9	36
63	A Role for <i>MMS4</i> in the Processing of Recombination Intermediates During Meiosis in <i>Saccharomyces cerevisiae</i> . Genetics, 2001, 159, 1511-1525.	2.9	101
64	Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nature Cell Biology, 2000, 2, 492-499.	10.3	290
65	Meiotic Segregation, Synapsis, and Recombination Checkpoint Functions Require Physical Interaction between the Chromosomal Proteins Red1p and Hop1p. Molecular and Cellular Biology, 2000, 20, 6646-6658.	2.3	137
66	Disjunction of Homologous Chromosomes in Meiosis I Depends on Proteolytic Cleavage of the Meiotic Cohesin Rec8 by Separin. Cell, 2000, 103, 387-398.	28.9	418
67	Meiosis in budding yeast and in multicellular eukaryotes — similarities and differences. , 2000, , 123-137.		4
68	Meiotic pairing and segregation of translocation quadrivalents in yeast. Chromosoma, 1998, 107, 247-254.	2.2	18
69	A cellular automaton model for chromosome interlocking in meiotic pairing. Simulation Modelling Practice and Theory, 1998, 6, 269-280.	0.3	0
70	Yeast Nuclei Display Prominent Centromere Clustering That Is Reduced in Nondividing Cells and in Meiotic Prophase. Journal of Cell Biology, 1998, 141, 21-29.	5.2	186
71	Chapter 12 Genetic and Morphological Approaches for the Analysis of Meiotic Chromosomes in Yeast. Methods in Cell Biology, 1997, 53, 257-285.	1.1	68
72	Switching yeast from meiosis to mitosis: double-strand break repair, recombination and synaptonemal complex. Genes To Cells, 1997, 2, 487-498.	1.2	65

#	Article	IF	CITATIONS
73	Karyotype Variability in Yeast Caused by Nonallelic Recombination in Haploid Meiosis. Genetics, 1997, 146, 79-88.	2.9	25
74	Simulation of chromosomal homology searching in meiotic pairing. Journal of Theoretical Biology, 1995, 176, 247-260.	1.7	15
75	A <scp>nalysis of active nucleolus organizing regions in</scp> <i>C<scp>apsicum</scp></i> (S <scp>olanaceae</scp>) <scp>by silver staining</scp> . American Journal of Botany, 1995, 82, 276-287.	1.7	34
76	Morphology of a human-derived YAC in yeast meiosis. Chromosoma, 1995, 104, 183-188.	2.2	23
77	Analysis of Active Nucleolus Organizing Regions in Capsicum (Solanaceae) by Silver Staining. American Journal of Botany, 1995, 82, 276.	1.7	33
78	Evaluation of models of homologue search with respect to their efficiency on meiotic pairing. Heredity, 1993, 71, 342-351.	2.6	10
79	Meiotic chromosome condensation and pairing in Saccharomyces cerevisiae studied by chromosome painting. Chromosoma, 1992, 101, 590-595.	2.2	132
80	Meiotic chromosome synapsis in a haploid yeast. Chromosoma, 1991, 100, 221-228.	2.2	173
81	Coming to grips with a complex matter. Chromosoma, 1991, 100, 289-292.	2.2	23
82	Elongated Bodies in SC-Spreads of MaleGryllodes Supplicans(Orthoptera). Caryologia, 1990, 43, 1-7.	0.3	0
83	The initiation of meiotic chromosome pairing: the cytological view. Genome, 1990, 33, 759-778.	2.0	279
84	Effects of elevated temperature on meiotic chromosome synapsis in Allium ursinum. Chromosoma, 1989, 97, 449-458.	2.2	58
85	SC-formation in someAllium species, and a discussion of the significance of SC-associated structures and of the mechanisms for presynaptic alignment. Plant Systematics and Evolution, 1987, 158, 117-131.	0.9	15
86	Banding ofAlliumChromosomes Protected Against Dnase Digestion by Dna-Binding Drugs. Biotechnic & Histochemistry, 1985, 60, 13-19.	0.4	1
87	Light Microscopical Observations on Surface Spread Synaptonemal Complexes of <i>Allium Ursinum </i> . Caryologia, 1984, 37, 415-421.	0.3	27
88	Some features of heterochromatin in wildAllium species. Plant Systematics and Evolution, 1983, 143, 117-131.	0.9	40
89	Structural changes of Ag-stained nucleolus organizing regions and nucleoli during meiosis in <i>Allium flavum</i> . Genome, 1983, 25, 524-529.	0.7	19
90	B-Chromosomes inAllium flavum (Liliaceae) and some related species. Plant Systematics and Evolution, 1982, 139, 197-207.	0.9	19

#	Article	IF	CITATIONS
91	C-band proximity of chiasmata and absence of terminalisation in Allium flavum (Liliaceae). Chromosoma, 1979, 73, 45-51.	2.2	42