M Foster Olive

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3600897/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ethanol consumption activates a subset of arcuate nucleus proâ€opiomelanocortin (POMC)â€producing neurons: a câ€fos immunohistochemistry study. Physiological Reports, 2022, 10, e15231.	1.7	2
2	Nuclear factor kappa B signaling within the rat nucleus accumbens core sex-dependently regulates cue-induced cocaine seeking and matrix metalloproteinase-9 expression. Brain, Behavior, and Immunity, 2022, 102, 252-265.	4.1	5
3	Sex differences and the lack of effects of chemogenetic manipulation of pro-opiomelanocortin (POMC) neurons on alcohol consumption in male and female mice. Brain Research, 2022, 1786, 147901.	2.2	2
4	Neuroimmune Mechanisms as Novel Treatment Targets for Substance Use Disorders and Associated Comorbidities. Frontiers in Neuroscience, 2021, 15, 650785.	2.8	31
5	Drugs of Abuse Differentially Alter the Neuronal Excitability of Prefrontal Layer V Pyramidal Cell Subtypes. Frontiers in Cellular Neuroscience, 2021, 15, 703655.	3.7	5
6	Alcohol consumption preferentially activates a subset of pro-opiomelanocortin (POMC) producing neurons targeting the amygdala. Neuropharmacology, 2021, 195, 108674.	4.1	5
7	Accumbens Cholinergic Interneurons Mediate Cue-Induced Nicotine Seeking and Associated Glutamatergic Plasticity. ENeuro, 2021, 8, ENEURO.0276-20.2020.	1.9	11
8	Early Life Stress Promotes Heroin Seeking But Does Not Alter the Excitability of Insular Pyramidal Cells Targeting the Nucleus Accumbens. Frontiers in Behavioral Neuroscience, 2021, 15, 777826.	2.0	5
9	A line before liquor: a novel model of cocaine and alcohol co-abuse reveals changes in glutamate homeostasis. Neuropsychopharmacology, 2020, 45, 439-440.	5.4	0
10	Reinforcing Effects of the Synthetic Cathinone α-Pyrrolidinopropiophenone (α-PPP) in a Repeated Extended Access Binge Paradigm. Frontiers in Psychiatry, 2020, 11, 862.	2.6	8
11	Restoration of prosocial behavior in rats after heroin self-administration via chemogenetic activation of the anterior insular cortex. Social Neuroscience, 2020, 15, 408-419.	1.3	14
12	Direct administration of ifenprodil and citalopram into the nucleus accumbens inhibits cue-induced nicotine seeking and associated glutamatergic plasticity. Brain Structure and Function, 2020, 225, 1967-1978.	2.3	5
13	Pharmacotherapeutic management of co-morbid alcohol and opioid use. Expert Opinion on Pharmacotherapy, 2020, 21, 823-839.	1.8	14
14	Ethanol has concentration-dependent effects on hypothalamic POMC neuronal excitability. Alcohol, 2020, 86, 103-112.	1.7	5
15	AMPA receptor and metabotropic glutamate receptor 1 adaptations in the nucleus accumbens core during incubation of methamphetamine craving. Neuropsychopharmacology, 2019, 44, 1534-1541.	5.4	26
16	Whole-Cell Patch-Clamp Electrophysiology to Study Ionotropic Glutamatergic Receptors and Their Roles in Addiction. Methods in Molecular Biology, 2019, 1941, 107-135.	0.9	4
17	Cognitive deficits and neurotoxicity induced by synthetic cathinones: is there a role for neuroinflammation?. Psychopharmacology, 2019, 236, 1079-1095.	3.1	26

18 Clinical Treatment of Addictive Disorders with N-Acetylcysteine. , 2019, , 219-233.

#	Article	IF	CITATIONS
19	Effects of heroin on rat prosocial behavior. Addiction Biology, 2019, 24, 676-684.	2.6	21
20	DARK Classics in Chemical Neuroscience: Cathinone-Derived Psychostimulants. ACS Chemical Neuroscience, 2018, 9, 2379-2394.	3.5	42
21	Designer drugs – A continuing chemical (R)evolution. Neuropharmacology, 2018, 134, 1-3.	4.1	2
22	α6 subunitâ€containing nicotinic receptors mediate lowâ€dose ethanol effects on ventral tegmental area neurons and ethanol reward. Addiction Biology, 2018, 23, 1079-1093.	2.6	14
23	Neurocognitive dysfunction following repeated binge-like self-administration of the synthetic cathinone 3,4-methylenedioxypyrovalerone (MDPV). Neuropharmacology, 2018, 134, 36-45.	4.1	34
24	Diolistic Labeling and Analysis of Dendritic Spines. Methods in Molecular Biology, 2018, 1727, 179-200.	0.9	11
25	Preface. International Review of Neurobiology, 2018, 140, xi-xv.	2.0	Ο
26	The Winding Road to Relapse: Forging a New Understanding of Cue-Induced Reinstatement Models and Their Associated Neural Mechanisms. Frontiers in Behavioral Neuroscience, 2018, 12, 17.	2.0	36
27	Social Influences in Animal Models of Opiate Addiction. International Review of Neurobiology, 2018, 140, 81-107.	2.0	6
28	Calciumâ€permeable <scp>AMPA</scp> receptors and silentÂsynapses in cocaineâ€conditioned place preference. EMBO Journal, 2017, 36, 458-474.	7.8	36
29	Preclinical Evidence That 5-HT1B Receptor Agonists Show Promise as Medications for Psychostimulant Use Disorders. International Journal of Neuropsychopharmacology, 2017, 20, 644-653.	2.1	14
30	The effect of litter separation on methamphetamine-conditioned place preference in post-partum dams. Behavioural Pharmacology, 2017, 28, 489-492.	1.7	0
31	mGlu5 Signaling: A Target for Addiction Therapeutics?. , 2017, , 1-14.		0
32	Structural and functional plasticity of dendritic spines – root or result of behavior?. Genes, Brain and Behavior, 2017, 16, 101-117.	2.2	128
33	Protein kinase CÉ› activity regulates mGluR5 surface expression in the rat nucleus accumbens. Journal of Neuroscience Research, 2017, 95, 1079-1090.	2.9	8
34	Synthetic Cannabinoids: a Summary of Selected Phenomena With Respect to Behavioral Pharmacology and Abuse Liability. , 2017, , 691-699.		1
35	Dendrites, 3 rd Edition. CNS and Neurological Disorders - Drug Targets, 2017, 16, .	1.4	0
36	Glutamate Receptors and Drug Addiction. , 2016, , 102-110.		2

#	Article	IF	CITATIONS
37	Opposite Effects of mGluR1a and mGluR5 Activation on Nucleus Accumbens Medium Spiny Neuron Dendritic Spine Density. PLoS ONE, 2016, 11, e0162755.	2.5	1,343
38	Nicotine-induced behavioral sensitization in an adult rat model of attention deficit/hyperactivity disorder (ADHD). Behavioural Brain Research, 2016, 312, 333-340.	2.2	4
39	Early life stress and chronic variable stress in adulthood interact to influence methamphetamine self-administration in male rats. Behavioural Pharmacology, 2016, 27, 182-184.	1.7	12
40	Chronic variable stress and intravenous methamphetamine self-administration – Role of individual differences in behavioral and physiological reactivity to novelty. Neuropharmacology, 2016, 108, 353-363.	4.1	7
41	The Effects of Amphetamine and Methamphetamine on Brain Activity-Related Immediate Early Gene Expression. , 2016, , 126-136.		0
42	Reinforcing Effects of Cathinone NPS in the Intravenous Drug Self-Administration Paradigm. Current Topics in Behavioral Neurosciences, 2016, 32, 133-143.	1.7	26
43	Interactions between Early Life Stress, Nucleus Accumbens MeCP2 Expression, and Methamphetamine Self-Administration in Male Rats. Neuropsychopharmacology, 2016, 41, 2851-2861.	5.4	21
44	Estradiol Facilitation of Cocaine Self-Administration in Female Rats Requires Activation of mGluR5. ENeuro, 2016, 3, ENEURO.0140-16.2016.	1.9	54
45	Sensitization to the Motor Stimulant Effects of 3,4-Methylenedioxypyrovalerone (MDPV) and Cross-Sensitization to Methamphetamine in Rats. Journal of Drug and Alcohol Research, 2016, 5, 1-10.	0.9	20
46	Editorial: structural plasticity induced by drugs of abuse. Frontiers in Pharmacology, 2015, 6, 88.	3.5	4
47	mGluR5 positive allosteric modulation and its effects on MK-801 induced set-shifting impairments in a rat operant delayed matching/non-matching-to-sample task. Psychopharmacology, 2015, 232, 251-258.	3.1	23
48	Effects of Â-Pyrrolidinopentiophenone and 4-Methyl-N-Ethylcathinone, Two Synthetic Cathinones Commonly Found in Second-Generation "Bath Salts," on Intracranial Self-Stimulation Thresholds in Rats. International Journal of Neuropsychopharmacology, 2015, 18, pyu014-pyu014.	2.1	30
49	Nicotine-induced place conditioning and locomotor activity in an adolescent animal model of attention deficit/hyperactivity disorder (ADHD). Behavioural Brain Research, 2015, 291, 184-188.	2.2	13
50	Stress and Spatial Maze Performance in the Rat. Neuromethods, 2015, , 211-258.	0.3	1
51	Neurokinin-1 (NK ₁) receptor antagonists as possible therapeutics for psychostimulant use disorders. CNS and Neurological Disorders - Drug Targets, 2015, 14, 700-706.	1.4	5
52	Effects of Modafinil and R-Modafinil on Brain Stimulation Reward Thresholds: Implications for Their Use in the Treatment of Psychostimulant Dependence. Journal of Drug and Alcohol Research, 2015, 4, 1-5.	0.9	5
53	Synthetic Cathinones and Their Rewarding and Reinforcing Effects in Rodents. Advances in Neuroscience (Hindawi), 2014, 2014, 1-9.	3.1	43
54	The development of acamprosate as a treatment against alcohol relapse. Expert Opinion on Drug Discovery, 2014, 9, 1355-1369.	5.0	14

#	Article	IF	CITATIONS
55	Early-life stress interactions with the epigenome. Behavioural Pharmacology, 2014, 25, 341-351.	1.7	42
56	Are AMPA Receptor Positive Allosteric Modulators Potential Pharmacotherapeutics for Addiction?. Pharmaceuticals, 2014, 7, 29-45.	3.8	9
57	Potent rewarding and reinforcing effects of the synthetic cathinone 3,4â€methylenedioxypyrovalerone (<scp>MDPV</scp>). Addiction Biology, 2014, 19, 165-174.	2.6	156
58	Combined antiretroviral therapy reduces brain viral load and pathological features of HIV encephalitis in a mouse model. Journal of NeuroVirology, 2014, 20, 9-17.	2.1	19
59	Ethanol preâ€exposure during adolescence or adulthood increases ethanol intake but ethanolâ€induced conditioned place preference is enhanced only when preâ€exposure occurs in adolescence. Developmental Psychobiology, 2014, 56, 36-48.	1.6	27
60	Synaptic depression via mGluR1 positive allosteric modulation suppresses cue-induced cocaine craving. Nature Neuroscience, 2014, 17, 73-80.	14.8	129
61	Chronic stress may facilitate the recruitment of habit- and addiction-related neurocircuitries through neuronal restructuring of the striatum. Neuroscience, 2014, 280, 231-242.	2.3	58
62	Chronic stress disrupts fear extinction and enhances amygdala and hippocampal Fos expression in an animal model of post-traumatic stress disorder. Neurobiology of Learning and Memory, 2014, 112, 139-147.	1.9	63
63	Enhancement of Extinction Learning Attenuates Ethanol-Seeking Behavior and Alters Plasticity in the Prefrontal Cortex. Journal of Neuroscience, 2014, 34, 7562-7574.	3.6	71
64	Attenuation of reinstatement of methamphetamine-, sucrose-, and food-seeking behavior in rats by fenobam, a metabotropic glutamate receptor 5 negative allosteric modulator. Psychopharmacology, 2013, 225, 151-159.	3.1	34
65	Hypothesizing that designer drugs containing cathinones ("bath saltsâ€) have profound neuro-inflammatory effects and dangerous neurotoxic response following human consumption. Medical Hypotheses, 2013, 81, 450-455.	1.5	20
66	Attenuation of methamphetamine seeking by the mGluR2/3 agonist LY379268 in rats with histories of restricted and escalated self-administration. Neuropharmacology, 2013, 66, 290-301.	4.1	46
67	Constitutive Knockout of Kalirin-7 Leads to Increased Rates of Cocaine Self-Administration. Molecular Pharmacology, 2013, 84, 582-590.	2.3	18
68	NMDA Receptor Modulators in the Treatment of Drug Addiction. Pharmaceuticals, 2013, 6, 251-268.	3.8	47
69	Similar Ethanol Drinking in Adolescent and Adult <scp>C</scp> 57 <scp>BL</scp> /6 <scp>J</scp> Mice After Chronic Ethanol Exposure and Withdrawal. Alcoholism: Clinical and Experimental Research, 2013, 37, 961-968.	2.4	15
70	Safety and Efficacy of Acamprosate for the Treatment of Alcohol Dependence. Substance Abuse: Research and Treatment, 2013, 7, SART.S9345.	0.9	20
71	The Effects of Maternal Separation on Adult Methamphetamine Self-Administration, Extinction, Reinstatement, and MeCP2 Immunoreactivity in the Nucleus Accumbens. Frontiers in Psychiatry, 2013, 4, 55.	2.6	61
72	The neurocircuitry of illicit psychostimulant addiction: acute and chronic effects in humans. Substance Abuse and Rehabilitation, 2013, 4, 29.	4.8	48

#	Article	IF	CITATIONS
73	Positive or negative allosteric modulation of metabotropic glutamate receptor 5 (mGluR5) does not alter expression of behavioral sensitization to methamphetamine. F1000Research, 2013, 2, 84.	1.6	8
74	Neuropeptide Systems and Schizophrenia. CNS and Neurological Disorders - Drug Targets, 2013, 12, 619-632.	1.4	36
75	The Reinforcing and Rewarding Effects of Methylone, a Synthetic Cathinone Commonly Found in "Bath Salts― Journal of Addiction Research & Therapy, 2013, 04, .	0.2	52
76	Novel Allosteric Agonists of M1 Muscarinic Acetylcholine Receptors Induce Brain Region-Specific Responses That Correspond with Behavioral Effects in Animal Models. Journal of Neuroscience, 2012, 32, 8532-8544.	3.6	98
77	Increases in Doublecortin Immunoreactivity in the Dentate Gyrus following Extinction of Heroin-Seeking Behavior. Neural Plasticity, 2012, 2012, 1-9.	2.2	6
78	Neurochemical and Neurostructural Plasticity in Alcoholism. ACS Chemical Neuroscience, 2012, 3, 494-504.	3.5	18
79	Differential modulation of thresholds for intracranial self-stimulation by mGlu5 positive and negative allosteric modulators: implications for effects on drug self-administration. Frontiers in Pharmacology, 2012, 2, 93.	3.5	16
80	Positive Allosteric Modulation of mGluR5 Accelerates Extinction Learning but Not Relearning Following Methamphetamine Self-Administration. Frontiers in Pharmacology, 2012, 3, 194.	3.5	24
81	Metabotropic glutamate receptors and drug addiction. Environmental Sciences Europe, 2012, 1, 281-295.	5.5	23
82	Ethanol, Glutamate, and the Ventral Tegmental Area—A Commentary on: Ding, Engleman, Rodd, and McBride, "Ethanol Increases Glutamate Neurotransmission in the Posterior Ventral Tegmental Area of Female Wistar Rats― Alcoholism: Clinical and Experimental Research, 2012, 36, 970-971.	2.4	0
83	Glutamatergic medications for the treatment of drug and behavioral addictions. Pharmacology Biochemistry and Behavior, 2012, 100, 801-810.	2.9	187
84	mGluR5 receptors in the basolateral amygdala and nucleus accumbens regulate cue-induced reinstatement of ethanol-seeking behavior. Pharmacology Biochemistry and Behavior, 2012, 101, 329-335.	2.9	91
85	The Mglur5 Positive Allosteric Modulator CDPPB Does not Alter Extinction or Contextual Reinstatement of Methamphetamine-Seeking Behavior in Rats. Journal of Addiction Research & Therapy, 2012, 01, .	0.2	15
86	Investigating Methamphetamine Craving Using the Extinction-Reinstatement Model in the Rat. Journal of Addiction Research & Therapy, 2012, 01, .	0.2	11
87	Functional interaction of mGlu5 and NMDA receptors in aversive learning in rats. Neurobiology of Learning and Memory, 2011, 95, 73-79.	1.9	44
88	Positive Allosteric Modulators of Type 5 Metabotropic Glutamate Receptors (mGluR5) and Their Therapeutic Potential for the Treatment of CNS Disorders. Molecules, 2011, 16, 2097-2106.	3.8	66
89	mGluR5 positive allosteric modulation enhances extinction learning following cocaine self-administration Behavioral Neuroscience, 2011, 125, 10-19.	1.2	64
90	Alcoholâ€seeking behavior is associated with increased glutamate transmission in basolateral amygdala and nucleus accumbens as measured by glutamateâ€oxidaseâ€coated biosensors. Addiction Biology, 2011, 16, 215-228.	2.6	98

#	Article	IF	CITATIONS
91	Changes in extracellular levels of glutamate in the nucleus accumbens after ethanol-induced behavioral sensitization in adolescent and adult mice. Alcohol, 2011, 45, 451-460.	1.7	39
92	Extinction Learning and Adult Neurogenesis. Neuropsychopharmacology, 2011, 36, 360-361.	5.4	6
93	Loss of Object Recognition Memory Produced by Extended Access to Methamphetamine Self-Administration is Reversed by Positive Allosteric Modulation of Metabotropic Glutamate Receptor 5. Neuropsychopharmacology, 2011, 36, 782-792.	5.4	122
94	Cognitive effects of Group I metabotropic glutamate receptor ligands in the context of drug addiction. European Journal of Pharmacology, 2010, 639, 47-58.	3.5	76
95	Inhibition of aldehyde dehydrogenase-2 suppresses cocaine seeking by generating THP, a cocaine use–dependent inhibitor of dopamine synthesis. Nature Medicine, 2010, 16, 1024-1028.	30.7	88
96	Conditioning of Addiction. , 2010, , 159-178.		4
97	Metabotropic Glutamate Receptor Ligands as Potential Therapeutics for Addiction. Current Drug Abuse Reviews, 2009, 2, 83-98.	3.4	187
98	mGluR5 Positive Allosteric Modulators Facilitate both Hippocampal LTP and LTD and Enhance Spatial Learning. Neuropsychopharmacology, 2009, 34, 2057-2071.	5.4	199
99	Ethanol Facilitates Glutamatergic Transmission to Dopamine Neurons in the Ventral Tegmental Area. Neuropsychopharmacology, 2009, 34, 307-318.	5.4	109
100	mGluR5 Antagonism Attenuates Methamphetamine Reinforcement and Prevents Reinstatement of Methamphetamine-Seeking Behavior in Rats. Neuropsychopharmacology, 2009, 34, 820-833.	5.4	111
101	Role of protein kinase C epsilon (PKCÉ›) in the reduction of ethanol reinforcement due to mGluR5 antagonism in the nucleus accumbens shell. Psychopharmacology, 2009, 204, 587-597.	3.1	53
102	N-Acetylcysteine reverses cocaine-induced metaplasticity. Nature Neuroscience, 2009, 12, 182-189.	14.8	362
103	Suppression of Heavy Drinking and Alcohol Seeking by a Selective ALDHâ€⊋ Inhibitor. Alcoholism: Clinical and Experimental Research, 2009, 33, 1935-1944.	2.4	78
104	Positive Allosteric Modulation of mGluR5 Receptors Facilitates Extinction of a Cocaine Contextual Memory. Biological Psychiatry, 2009, 65, 717-720.	1.3	121
105	Effects of the mGluR2/3 agonist LY379268 and the mGluR5 antagonist MPEP on handling-induced convulsions during ethanol withdrawal in mice. Alcohol, 2008, 42, 191-197.	1.7	21
106	A Role for mGluR5 Receptors in Intravenous Methamphetamine Selfâ€Administration. Annals of the New York Academy of Sciences, 2008, 1139, 206-211.	3.8	33
107	PRECLINICAL STUDY: A microdialysis study of extracellular levels of acamprosate and naltrexone in the rat brain following acute and repeated administration. Addiction Biology, 2008, 13, 70-79.	2.6	17
108	Glutamatergic substrates of drug addiction and alcoholism. Biochemical Pharmacology, 2008, 75, 218-265.	4.4	439

#	Article	IF	CITATIONS
109	Effects of adolescent exposure to cocaine on locomotor activity and extracellular dopamine and glutamate levels in nucleus accumbens of DBA/2J mice. Brain Research, 2008, 1193, 34-42.	2.2	35
110	Transcriptional profiling of the rat frontal cortex following administration of the mGlu5 receptor antagonists MPEP and MTEP. European Journal of Pharmacology, 2008, 584, 253-262.	3.5	16
111	The safety of disulfiram for the treatment of alcohol and cocaine dependence in randomized clinical trials: guidance for clinical practice. Expert Opinion on Drug Safety, 2008, 7, 459-472.	2.4	49
112	Reinstatement of Ethanol-Seeking Behavior Following Intravenous Self-Administration in Wistar Rats. Alcoholism: Clinical and Experimental Research, 2007, 31, 1441-1445.	2.4	44
113	Acamprosate attenuates cocaine- and cue-induced reinstatement of cocaine-seeking behavior in rats. Psychopharmacology, 2007, 195, 397-406.	3.1	24
114	Intracranial Stereotaxic Cannulation for Development of Orthotopic Glioblastoma Allograft in Sprague-Dawley Rats and Histoimmunopathological Characterization of the Brain Tumor. Neurochemical Research, 2007, 32, 2235-2242.	3.3	13
115	Anxiogenic and aversive effects of corticotropin-releasing factor (CRF) in the bed nucleus of the stria terminalis in the rat: role of CRF receptor subtypes. Psychopharmacology, 2006, 186, 122-132.	3.1	168
116	Role of the Endogenous Opioid System on the Neuropsychopharmacological Effects of Ethanol: New Insights About an Old Question. Alcoholism: Clinical and Experimental Research, 2005, 29, 1522-1527.	2.4	31
117	The mGluR5 Antagonist 6-Methyl-2-(phenylethynyl)pyridine Decreases Ethanol Consumption via a Protein Kinase Clµ-Dependent Mechanism. Molecular Pharmacology, 2005, 67, 349-355.	2.3	119
118	The glucocorticoid receptor antagonist mifepristone reduces ethanol intake in rats under limited access conditions. Psychoneuroendocrinology, 2004, 29, 999-1003.	2.7	78
119	Protein Kinase C Isozymes and Addiction. Molecular Neurobiology, 2004, 29, 139-154.	4.0	31
120	Effect of the mGluR5 antagonist 6-methyl-2-(phenylethynyl)pyridine (MPEP) on the acute locomotor stimulant properties of cocaine, d-amphetamine, and the dopamine reuptake inhibitor GBR12909 in mice. Psychopharmacology, 2004, 174, 266-73.	3.1	62
121	A role for corticotropin releasing factor (CRF) in ethanol consumption, sensitivity, and reward as revealed by CRF-deficient mice. Psychopharmacology, 2003, 165, 181-187.	3.1	78
122	The mGluR5 antagonist MPEP reduces the conditioned rewarding effects of cocaine but not other drugs of abuse. Synapse, 2003, 47, 240-242.	1.2	169
123	The anti-relapse compound acamprosate inhibits the development of a conditioned place preference to ethanol and cocaine but not morphine. British Journal of Pharmacology, 2003, 138, 9-12.	5.4	70
124	Alcohol Addiction. , 2003, 233, 555-570.		2
125	The anti-craving taurine derivative acamprosate: failure to extinguish morphine conditioned place preference. Advances in Experimental Medicine and Biology, 2003, 526, 481-4.	1.6	2
126	Ethanol consumption patterns and conditioned place preference in mice lacking preproenkephalin. Neuroscience Letters, 2002, 325, 75-78.	2.1	40

#	Article	IF	CITATIONS
127	Effects of acute acamprosate and homotaurine on ethanol intake and ethanol-stimulated mesolimbic dopamine release. European Journal of Pharmacology, 2002, 437, 55-61.	3.5	71
128	Elevated extracellular CRF levels in the bed nucleus of the stria terminalis during ethanol withdrawal and reduction by subsequent ethanol intake. Pharmacology Biochemistry and Behavior, 2002, 72, 213-220.	2.9	220
129	Decreased anxiety-like behavior, reduced stress hormones, and neurosteroid supersensitivity in mice lacking protein kinase Cε. Journal of Clinical Investigation, 2002, 110, 1003-1010.	8.2	58
130	Decreased anxiety-like behavior, reduced stress hormones, and neurosteroid supersensitivity in mice lacking protein kinase Cε. Journal of Clinical Investigation, 2002, 110, 1003-1010.	8.2	114
131	Reduced ethanol withdrawal severity and altered withdrawal-induced c-fos expression in various brain regions of mice lacking protein kinase C-epsilon. Neuroscience, 2001, 103, 171-179.	2.3	46
132	Stimulation of Endorphin Neurotransmission in the Nucleus Accumbens by Ethanol, Cocaine, and Amphetamine. Journal of Neuroscience, 2001, 21, RC184-RC184.	3.6	241
133	The discriminative stimulus properties of self-administered ethanol are mediated by GABA A and NMDA receptors in rats. Psychopharmacology, 2001, 154, 13-22.	3.1	31
134	Co-localization of PKCε with various GABAA receptor subunits in the mouse limbic system. NeuroReport, 2000, 11, 683-687.	1.2	15
135	Reduced operant ethanol self-administration and in vivo mesolimbic dopamine responses to ethanol inPKCε-deficient mice. European Journal of Neuroscience, 2000, 12, 4131-4140.	2.6	122
136	Supersensitivity to allosteric GABAA receptor modulators and alcohol in mice lacking PKCε. Nature Neuroscience, 1999, 2, 997-1002.	14.8	309
137	Repeated heroin administration increases extracellular opioid peptide-like immunoreactivity in the globus pallidus/ventral pallidum of freely moving rats. Psychopharmacology, 1998, 139, 251-254.	3.1	24