
Junge Zhi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3600024/publications.pdf Version: 2024-02-01

LUNCE 7HI

#	Article	IF	CITATIONS
1	Multicomponent Spiropolymerization of Diisocyanides, Activated Alkynes, and Bis-Anhydrides. Macromolecules, 2022, 55, 6150-6159.	4.8	6
2	Catalystâ€Free Multicomponent Cyclopolymerizations of Diisocyanides, Activated Alkynes, and 1,4â€Dibromoâ€2,3â€Butanedione: a Facile Strategy toward Functional Polyiminofurans Containing Bromomethyl Groups. Macromolecular Rapid Communications, 2021, 42, e2000463.	3.9	13
3	Regioisomeric AIE-active luminogens with a substituent aldehyde group for controllable and reversible photochromic behavior and sensitive fluorescence detection of hydrogen sulfite. Journal of Materials Chemistry C, 2021, 9, 3882-3891.	5.5	18
4	Chiral Pentaphenylpyrrole Derivatives with Aggregation-Induced Emission Enhancement and Aggregation Induced Circular Dichroism and Their Helical Self-assembly. E3S Web of Conferences, 2021, 267, 02012.	0.5	0
5	Multicomponent Spiropolymerization of Diisocyanides, Diethyl Acetylenedicarboxylate, and Halogenated Quinones. Macromolecular Rapid Communications, 2021, 42, e2100029.	3.9	9
6	Spontaneous Multicomponent Polymerization of Imidazole, Diacetylenic Esters, and Diisocyanates for the Preparation of Poly(l²-aminoacrylate)s with Cluster-Induced Emission Characteristics. Macromolecules, 2020, 53, 1054-1062.	4.8	27
7	1,2,5â€Triphenylpyrrole Derivatives with Dual Intense Photoluminescence in Both Solution and the Solid State: Solvatochromism and Polymorphic Luminescence Properties. Chemistry - A European Journal, 2019, 25, 573-581.	3.3	39
8	Tetrathienyletheneâ€based Positional Isomers with Aggregationâ€induced Emission Enabling Super Redâ€shifted Reversible Mechanochromism and Nakedâ€eye Sensing of Hydrazine Vapor. Chemistry - an Asian Journal, 2019, 14, 3875-3882.	3.3	23
9	Rational design of aggregation-induced emission sensor based on Rhodamine B for turn-on sensing of trivalent metal cations, reversible data protection, and bioimaging. Materials Chemistry Frontiers, 2019, 3, 151-160.	5.9	41
10	A novel strategy for realizing dual state fluorescence and low-temperature phosphorescence. Materials Chemistry Frontiers, 2019, 3, 284-291.	5.9	39
11	Donor–acceptor type aggregation-induced emission luminophores based on the 1,1-dicyanomethylene-3-indanone unit for bridge-dependent reversible mechanochromism and light-up biosensing of hypochlorites. Journal of Materials Chemistry C, 2019, 7, 8888-8897.	5.5	40
12	Synthesis and Characterization of Poly(iminofuran-arylene) Containing Bromomethyl Groups Linked at the 5-Position of a Furan Ring via the Multicomponent Polymerizations of Diisocyanides, Dialkylacetylene Dicarboxylates, and Bis(2-bromoacetyl)biphenyl. Macromolecules, 2019, 52, 3319-3326.	4.8	23
13	AliBu3: unprecedented main-group metal catalyst for helical sense-selective polymerization of chiral aryl isocyanides and copolymerization with achiral aryl isocyanides. Materials Chemistry Frontiers, 2019, 3, 1192-1198.	5.9	4
14	lonic liquid crystals with aggregation-induced emission properties based on pyrrolo[3,2- <i>b</i>]pyrrole salt compounds. Materials Chemistry Frontiers, 2019, 3, 1385-1390.	5.9	9
15	Synthesis of Poly(amine–furan–arylene)s through a One-Pot Catalyst-Free in Situ Cyclopolymerization of Diisocyanide, Dialkylacetylene Dicarboxylates, and Dialdehyde. Macromolecules, 2019, 52, 729-737.	4.8	23
16	Synthesis of Polyquinolines via One-Pot Polymerization of Alkyne, Aldehyde, and Aniline under Metal-Free Catalysis and Their Properties. Macromolecules, 2018, 51, 3254-3263.	4.8	27
17	Cationic half-sandwich rare-earth metal alkyl species catalyzed polymerization and copolymerization of aryl isocyanides possessing polar, bulky, or chiral substituents. Polymer Chemistry, 2018, 9, 984-993.	3.9	11
18	The Synergistic Effect between Triphenylpyrrole Isomers as Donors, Linking Groups, and Acceptors on the Fluorescence Properties of D–π–A Compounds in the Solid State. Chemistry - A European Journal, 2018, 24, 434-442.	3.3	23

Junge Zhi

#	Article	IF	CITATIONS
19	Multicomponent spiropolymerization of diisocyanides, alkynes and carbon dioxide for constructing 1,6-dioxospiro[4,4]nonane-3,8-diene as structural units under one-pot catalyst-free conditions. Polymer Chemistry, 2018, 9, 5543-5550.	3.9	26
20	Synthesis and characterization of poly(ethene–ketone–arylene–ketone)s containing pendant methylthio groups <i>via</i> metal-free catalyzed copolymerization of aryldiynes with DMSO. Polymer Chemistry, 2018, 9, 4404-4412.	3.9	9
21	The Dualâ€State Luminescent Mechanism of 2,3,4,5â€Tetraphenylâ€1 <i>H</i> â€pyrrole. Chemistry - A European Journal, 2018, 24, 14269-14274.	3.3	51
22	Onâ€Water Polymerization of Phenylacetylene Catalyzed by Rh Complexes Bearing Strong Ï€â€Acidic Dibenzo[a,e]cyclooctatetraene Ligand. Journal of Polymer Science Part A, 2017, 55, 716-725.	2.3	8
23	Effect of Substituent Position on the Photophysical Properties of Triphenylpyrrole Isomers. Journal of Physical Chemistry C, 2017, 121, 11658-11664.	3.1	32
24	Aggregation-induced emission enhancement and aggregation-induced circular dichroism of chiral pentaphenylpyrrole derivatives and their helical self-assembly. New Journal of Chemistry, 2017, 41, 8877-8884.	2.8	27
25	The fluorescent bioprobe with aggregation-induced emission features for monitoring to carbon dioxide generation rate in single living cell and early identification of cancer cells. Biomaterials, 2016, 103, 67-74.	11.4	34
26	Anthracene Modified by Aldehyde Groups Exhibiting Aggregationâ€Induced Emission Properties. Chinese Journal of Chemistry, 2016, 34, 1071-1075.	4.9	18
27	The synthesis of chiral triphenylpyrrole derivatives and their aggregation-induced emission enhancement, aggregation-induced circular dichroism and helical self-assembly. RSC Advances, 2016, 6, 23420-23427.	3.6	20
28	Aggregationâ€Induced Emission of Hexaphenylâ€1,3â€butadiene. Chinese Journal of Chemistry, 2015, 33, 701-704.	4.9	13
29	Red fluorescent luminogen from pyrrole derivatives with aggregation-enhanced emission for cell membrane imaging. Chemical Communications, 2015, 51, 8555-8558.	4.1	54
30	Tunable fluorescence upon aggregation: Photophysical properties of cationic conjugated polyelectrolytes containing AIE and ACQ units and their use in the dual-channel quantification of heparin. Sensors and Actuators B: Chemical, 2014, 197, 334-341.	7.8	27
31	An AIEE polyelectrolyte as a light-up fluorescent probe for heparin sensing in full detection range. Science China Chemistry, 2013, 56, 1239-1246.	8.2	13
32	Effect of bilayer number on the photoluminescent property of TPE-based self-assembled film. Science Bulletin, 2013, 58, 2728-2732.	1.7	6
33	Tunable fluorescence conjugated copolymers consisting of tetraphenylethylene and fluorene units: From aggregationâ€induced emission enhancement to dualâ€channel fluorescence response. Journal of Polymer Science Part A, 2013, 51, 229-240.	2.3	50
34	A highly sensitive, single selective, real-time and "turn-on―fluorescent sensor for Al3+ detection in aqueous media. Journal of Materials Chemistry, 2012, 22, 19296.	6.7	110
35	SYNTHESIS AND PROPERTY OF A WATER-SOLUBLE AGGREGATION-INDUCED EMISSION ENHANCEMENT CONJUGATED POLYMER. Acta Polymerica Sinica, 2012, 012, 453-461.	0.0	8
36	Aggregation-Induced Emission Enhancement of Aryl-Substituted Pyrrole Derivatives. Journal of Physical Chemistry B, 2010, 114, 16731-16736.	2.6	139

#	Article	IF	CITATIONS
37	Synthesis and characterization of optically active helical vinyl polymers via free radical polymerization. Journal of Polymer Science Part A, 2009, 47, 2408-2421.	2.3	37
38	Acetylene Polycyclotrimerization:  Synthesis and Characterization of Ferrocene-Containing Hyperbranched Polyarylenes. Macromolecules, 2007, 40, 5612-5617.	4.8	19