Garrelt Mellema

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3598791/publications.pdf

Version: 2024-02-01

108 6,245 44 76
papers citations h-index g-index

109 109 109 2894 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	A comparative study of disc-planet interaction. Monthly Notices of the Royal Astronomical Society, 2006, 370, 529-558.	4.4	320
2	Simulating cosmic reionization at large scales - I. The geometry of reionization. Monthly Notices of the Royal Astronomical Society, 2006, 369, 1625-1638.	4.4	300
3	Reionization and the Cosmic Dawn with the Square Kilometre Array. Experimental Astronomy, 2013, 36, 235-318.	3.7	255
4	Halting type I planet migration in non-isothermal disks. Astronomy and Astrophysics, 2006, 459, L17-L20.	5.1	233
5	Improved upper limits on the 21 cm signal power spectrum of neutral hydrogen at z â‰^9.1 from LOFAR. Monthly Notices of the Royal Astronomical Society, 2020, 493, 1662-1685.	4.4	185
6	Cosmological radiative transfer codes comparison project "½½"½½"½½"½½" I. The static density field tests. Monthly Notices of the Royal Astronomical Society, 2006, 371, 1057-1086.	4.4	181
7	C2-ray: A new method for photon-conserving transport of ionizing radiation. New Astronomy, 2006, 11, 374-395.	1.8	180
8	Simulating cosmic reionization at large scales - II. The 21-cm emission features and statistical signals. Monthly Notices of the Royal Astronomical Society, 2006, 372, 679-692.	4.4	176
9	Planets opening dust gaps in gas disks. Astronomy and Astrophysics, 2004, 425, L9-L12.	5.1	166
10	Dust flow in gas disks in the presence of embedded planets. Astronomy and Astrophysics, 2006, 453, 1129-1140.	5.1	164
11	Self-regulated reionization. Monthly Notices of the Royal Astronomical Society, 2007, 376, 534-548.	4.4	161
12	Simulating cosmic reionization: how large a volume is large enough?. Monthly Notices of the Royal Astronomical Society, 2014, 439, 725-743.	4.4	154
13	Radiation-magnetohydrodynamic simulations of Hâ€fii regions and their associated PDRs in turbulent molecular clouds. Monthly Notices of the Royal Astronomical Society, 2011, 414, 1747-1768.	4.4	130
14	Initial deep LOFAR observations of epoch of reionization windows. Astronomy and Astrophysics, 2013, 550, A136.	5.1	128
15	Planetesimal and gas dynamics in binaries. Monthly Notices of the Royal Astronomical Society, 2008, 386, 973-988.	4.4	107
16	Dynamical HiiRegion Evolution in Turbulent Molecular Clouds. Astrophysical Journal, 2006, 647, 397-403.	4.5	105
17	Redshift-space distortion of the 21-cm background from the epoch of reionization - I. Methodology re-examined. Monthly Notices of the Royal Astronomical Society, 2012, 422, 926-954.	4.4	102
18	DETECTING THE RISE AND FALL OF THE FIRST STARS BY THEIR IMPACT ON COSMIC REIONIZATION. Astrophysical Journal Letters, 2012, 756, L16.	8.3	96

#	Article	IF	CITATIONS
19	Non-parametric foreground subtraction for 21-cm epoch of reionization experiments. Monthly Notices of the Royal Astronomical Society, 2009, 397, 1138-1152.	4.4	95
20	Cosmological radiative transfer comparison project $\tilde{A}^{\xi}\hat{A}\in \hat{A}^{\epsilon}$ II. The radiation-hydrodynamic tests. Monthly Notices of the Royal Astronomical Society, 2009, 400, 1283-1316.	4.4	94
21	On the use of LyÎ \pm emitters as probes of reionization. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1366-1381.	4.4	94
22	Fast large-scale reionization simulations. Monthly Notices of the Royal Astronomical Society, 2009, 393, 32-48.	4.4	91
23	Light-cone effect on the reionization 21-cm power spectrum. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1877-1891.	4.4	87
24	Growing and moving low-mass planets in non-isothermal disks. Astronomy and Astrophysics, 2008, 478, 245-266.	5.1	83
25	Hybrid characteristics: 3D radiative transfer for parallel adaptive mesh refinement hydrodynamics. Astronomy and Astrophysics, 2006, 452, 907-920.	5.1	82
26	Topology and sizes of Hâ€fii regions during cosmic reionization. Monthly Notices of the Royal Astronomical Society, 2011, 413, 1353-1372.	4.4	82
27	Can 21-cm observations discriminate between high-mass and low-mass galaxies as reionization sources?. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2222-2253.	4.4	80
28	The first power spectrum limit on the 21-cm signal of neutral hydrogen during the Cosmic Dawn at zÂ= 20â€"25 from LOFAR. Monthly Notices of the Royal Astronomical Society, 2019, 488, 4271-4287.	4.4	77
29	The effect of the intergalactic environment on the observability of LyÎ \pm emitters during reionization. Monthly Notices of the Royal Astronomical Society, 2008, 391, 63-83.	4.4	73
30	Probing reionization with LOFAR using 21-cm redshift space distortions. Monthly Notices of the Royal Astronomical Society, 2013, 435, 460-474.	4.4	69
31	Constraining the intergalactic medium at z \hat{a} % 9.1 using LOFAR Epoch of Reionization observations. Monthly Notices of the Royal Astronomical Society, 2020, 493, 4728-4747.	4.4	69
32	Radiation-magnetohydrodynamic simulations of the photoionization of magnetized globules. Monthly Notices of the Royal Astronomical Society, 2009, 398, 157-175.	4.4	68
33	Initial LOFAR observations of epoch of reionization windows. Astronomy and Astrophysics, 2014, 568, A101.	5.1	67
34	THE KINETIC SUNYAEV-ZEL'DOVICH EFFECT AS A PROBE OF THE PHYSICS OF COSMIC REIONIZATION: THE EFFECT OF SELF-REGULATED REIONIZATION. Astrophysical Journal, 2013, 769, 93.	4.5	64
35	The LOFAR radio environment. Astronomy and Astrophysics, 2013, 549, A11.	5.1	63
36	The Kinetic Sunyaevâ€Zel'dovich Effect from Radiative Transfer Simulations of Patchy Reionization. Astrophysical Journal, 2007, 660, 933-944.	4.5	61

3

#	Article	IF	CITATIONS
37	Current models of the observable consequences of cosmic reionization and their detectability. Monthly Notices of the Royal Astronomical Society, 2008, 384, 863-874.	4.4	56
38	Rings in the haloes of planetary nebulae. Astronomy and Astrophysics, 2004, 417, 637-646.	5.1	56
39	Light cone effect on the reionization 21-cm signal $\hat{a}\in$ II. Evolution, anisotropies and observational implications. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1491-1506.	4.4	55
40	Tight constraints on the excess radio background at $z\hat{A}$ = 9.1 from LOFAR. Monthly Notices of the Royal Astronomical Society, 2020, 498, 4178-4191.	4.4	55
41	Constraining the epoch of reionization with the variance statistic: simulations of the LOFAR case. Monthly Notices of the Royal Astronomical Society, 2014, 443, 1113-1124.	4.4	54
42	Detection and extraction of signals from the epoch of reionization using higher-order one-point statistics. Monthly Notices of the Royal Astronomical Society, 2009, 393, 1449-1458.	4.4	52
43	Bubble size statistics during reionization from 21-cm tomography. Monthly Notices of the Royal Astronomical Society, 2018, 473, 2949-2964.	4.4	50
44	Interpreting LOFAR 21-cm signal upper limits at $\langle i \rangle z \langle i \rangle$ ≠9.1 in the context of high- $\langle i \rangle z \langle i \rangle$ galaxy and reionization observations. Monthly Notices of the Royal Astronomical Society, 2020, 501, 1-13.	4.4	46
45	The 21-cm bispectrum as a probe of non-Gaussianities due to X-ray heating. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2653-2669.	4.4	44
46	Hydrodynamical Models of Outflow Collimation in Young Stellar Objects. Astrophysical Journal, 1996, 472, 684-702.	4.5	44
47	Numerical simulations of type III planetary migration $\tilde{\mathbb{A}} \in \hat{\mathbb{A}}$ " I. Disc model and convergence tests. Monthly Notices of the Royal Astronomical Society, 2008, 386, 164-178.	4.4	43
48	Power spectrum extraction for redshifted 21-cm Epoch of Reionization experiments: the LOFAR case. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	43
49	Optimal identification of H ii regions during reionization in 21-cm observations. Monthly Notices of the Royal Astronomical Society, 2018, 479, 5596-5611.	4.4	40
50	Numerical simulations of type III planetary migration - III. Outward migration of massive planets. Monthly Notices of the Royal Astronomical Society, 2008, 387, 1063-1079.	4.4	38
51	Line ratios from shocked cloudlets in planetary nebulae. Astronomy and Astrophysics, 2008, 489, 1141-1150.	5.1	38
52	Photoevaporating Flows from the Cometary Knots in the Helix Nebula (NGC 7293). Astrophysical Journal, 2001, 548, 288-295.	4.5	38
53	Numerical simulations of type III planetary migration $\tilde{\mathbb{A}} \in \hat{\mathbb{A}}$ II. Inward migration of massive planets. Monthly Notices of the Royal Astronomical Society, 2008, 386, 179-198.	4.4	37
54	Constraining the state of the intergalactic medium during the Epoch of Reionization using MWA 21-cm signal observations. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4551-4562.	4.4	37

#	Article	IF	CITATIONS
55	Recovering the H ii region size statistics from 21-cm tomography. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1936-1954.	4.4	36
56	Signature of patchy reionization in the polarization anisotropy of the CMB. Physical Review D, 2007, 76, .	4.7	35
57	Prospects of observing a quasar H ii region during the epoch of reionization with the redshifted 21-cm signal. Monthly Notices of the Royal Astronomical Society, 2012, 424, 762-778.	4.4	35
58	Prediction of the 21-cm signal from reionization: comparison between 3D and 1D radiative transfer schemes. Monthly Notices of the Royal Astronomical Society, 2018, 476, 1741-1755.	4.4	34
59	An Axisymmetric, Radiative Bow Shock Model with a Realistic Treatment of Ionization and Cooling. Astrophysical Journal, Supplement Series, 1997, 109, 517-535.	7.7	32
60	RODEO: a new method for planet-disk interaction. Astronomy and Astrophysics, 2006, 450, 1203-1220.	5.1	31
61	Evaluating the QSO contribution to the 21-cm signal from the Cosmic Dawn. Monthly Notices of the Royal Astronomical Society, 2019, 487, 1101-1119.	4.4	31
62	Measuring the history of cosmic reionization using the 21-cm probability distribution function from simulations. Monthly Notices of the Royal Astronomical Society, 2010, 406, 2521-2532.	4.4	30
63	Dependence of the local reionization history on halo mass and environment: did Virgo reionize the Local Group?. Monthly Notices of the Royal Astronomical Society, 2007, 381, 367-376.	4.4	28
64	Radiative transfer of energetic photons: X-rays and helium ionization in C2-Ray. Monthly Notices of the Royal Astronomical Society, 2012, 421, 2232-2250.	4.4	27
65	Neutral island statistics during reionization from 21-cm tomography. Monthly Notices of the Royal Astronomical Society, 2019, 489, 1590-1605.	4.4	25
66	Impact of Ly $\hat{l}\pm$ heating on the global 21-cm signal from the Cosmic Dawn. Monthly Notices of the Royal Astronomical Society, 2020, 492, 634-644.	4.4	25
67	A cross-correlation study between the cosmological 21 cm signal and the kinetic Sunyaev-Zel'dovich effect. Monthly Notices of the Royal Astronomical Society, 2010, 402, 2279-2290.	4.4	24
68	Will Nonlinear Peculiar Velocity and Inhomogeneous Reionization Spoil 21Âcm Cosmology from the Epoch of Reionization?. Physical Review Letters, 2013, 110, 151301.	7.8	24
69	A PHYSICAL MODEL OF Lyα EMITTERS. Astrophysical Journal, 2009, 704, 724-732.	4.5	23
70	LOFAR insights into the epoch of reionization from the cross-power spectrum of 21 cm emission and galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 432, 2615-2624.	4.4	23
71	Redshifted 21-cm bispectrum – l. Impact of the redshift space distortions on the signal from the Epoch of Reionization. Monthly Notices of the Royal Astronomical Society, 2020, 499, 5090-5106.	4.4	23
72	Reionization of the Local Group of galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 413, 2093-2102.	4.4	22

#	Article	IF	Citations
73	Prospects for detecting the 21Âcm forest from the diffuse intergalactic medium with LOFAR. Monthly Notices of the Royal Astronomical Society, 2013, 428, 1755-1765.	4.4	22
74	Measuring the topology of reionization with Betti numbers. Monthly Notices of the Royal Astronomical Society, 2021, 505, 1863-1877.	4.4	22
75	High-resolution radio structure and optical kinematics of NGC 7027. Monthly Notices of the Royal Astronomical Society, 2003, 340, 381-397.	4.4	21
76	Observational constraints on supermassive dark stars. Monthly Notices of the Royal Astronomical Society: Letters, 2010, 407, L74-L78.	3.3	21
77	kSZ from patchy reionization: The view from the simulations. New Astronomy Reviews, 2006, 50, 909-917.	12.8	20
78	2D GENUS TOPOLOGY OF 21-CM DIFFERENTIAL BRIGHTNESS TEMPERATURE DURING COSMIC REIONIZATION. Journal of the Korean Astronomical Society, 2014, 47, 49-67.	1.5	20
79	The impact of inhomogeneous subgrid clumping on cosmic reionization. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1600-1621.	4.4	19
80	Redshifted 21-cm bispectrum – II. Impact of the spin temperature fluctuations and redshift space distortions on the signal from the Cosmic Dawn. Monthly Notices of the Royal Astronomical Society, 2021, 502, 3800-3813.	4.4	19
81	Tools21cm: A python package to analyse the large-scale 21-cm signal from the Epoch of Reionization and Cosmic Dawn. Journal of Open Source Software, 2020, 5, 2363.	4.6	19
82	Stars and reionization: the cross-correlation of the $21\hat{a}\in\%$ cm line and the near-infrared background. Monthly Notices of the Royal Astronomical Society, 2014, 440, 298-306.	4.4	18
83	Reconstructing the Thomson Optical Depth due to Patchy Reionization with 21 cm Fluctuation Maps. Astrophysical Journal, 2007, 663, L1-L4.	4.5	16
84	Deep learning approach for identification of H <scp>ii</scp> regions during reionization in 21-cm observations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3982-3997.	4.4	16
85	A numerical study of 21-cm signal suppression and noise increase in direction-dependent calibration of LOFAR data. Monthly Notices of the Royal Astronomical Society, 2021, 509, 3693-3702.	4.4	15
86	Redshift-space distortions in simulations of the 21-cm signal from the cosmic dawn. Monthly Notices of the Royal Astronomical Society, 2021, 506, 3717-3733.	4.4	14
87	Blowing up warped disks in 3D. Astronomy and Astrophysics, 2005, 444, 849-860.	5.1	12
88	The brightness and spatial distributions of terrestrial radio sources. Monthly Notices of the Royal Astronomical Society, 2013, 435, 584-596.	4.4	12
89	Predictions for the 21cm-galaxy cross-power spectrum observable with SKA and future galaxy surveys. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	11
90	The inhomogeneous reionization of the local intergalactic medium by metal-poor globular clusters. Monthly Notices of the Royal Astronomical Society, 2013, 431, 3087-3102.	4.4	10

#	Article	lF	CITATIONS
91	The Epoch of Reionization 21-cm bispectrum: the impact of light-cone effects and detectability. Monthly Notices of the Royal Astronomical Society, 2021, 508, 3848-3859.	4.4	10
92	Bubble mapping with the Square Kilometre Array – I. Detecting galaxies with Euclid, JWST, WFIRST, and ELT within ionized bubbles in the intergalactic medium at z & amp;gt; 6. Monthly Notices of the Royal Astronomical Society, 2020, 493, 855-870.	4.4	8
93	The large-scale 21-cm power spectrum from reionization. Monthly Notices of the Royal Astronomical Society, 2022, 513, 5109-5124.	4.4	8
94	Reionization: characteristic scales, topology and observability. Astrophysics and Space Science, 2009, 320, 39-43.	1.4	7
95	The multifrequency angular power spectrum in parameter studies of the cosmic 21-cm signal. Monthly Notices of the Royal Astronomical Society: Letters, 2022, 514, L31-L35.	3.3	7
96	The Theory and Simulation of the $21\hat{a} \in \mathbb{C}$ Background from the Epoch of Reionization. AIP Conference Proceedings, 2008, , .	0.4	5
97	Shaping planetary nebulae: is it different for [WR] stars?. , 2001, 275, 147-157.		4
98	Simulating cosmic reionization and the radiation backgrounds from the epoch of reionization. AIP Conference Proceedings, 2012, , .	0.4	3
99	Shock focusing and jet collimation in young stars. Astrophysics and Space Science, 1995, 233, 145-153.	1.4	2
100	The fate of clouds in radio lobes. New Astronomy Reviews, 2003, 47, 243-247.	12.8	2
101	Ionisation fronts and their interaction with density fluctuations: implications for reionisation. Proceedings of the International Astronomical Union, 2005, 1, 369-374.	0.0	2
102	Simulating Reionization: Character and Observability., 2008,,.		2
103	The Inhomogeneous Background of H2 Dissociating Radiation During Cosmic Reionization. , 2008, , .		1
104	Abundance Analysis of a Sample of Bipolar Type I Planetary Nebulae. AIP Conference Proceedings, 2005, ,	0.4	0
105	Radiation-MHD Simulations of HII Region Expansion in Turbulent Molecular Clouds. Proceedings of the International Astronomical Union, 2010, 6, 297-300.	0.0	0
106	Cosmological Reionization by the First Stars in the H[sub 2]-Dissociating Background. , 2010, , .		0
107	Rings in the haloes of planetary nebulae. Astronomy and Astrophysics, 2004, 424, 197-197.	5.1	0
108	Photo-Ionization Dynamics Simulation. Lecture Notes in Computational Science and Engineering, 2009, , 307-310.	0.3	0