G Cristina Brailoiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3598780/publications.pdf

Version: 2024-02-01

45 papers 2,284 citations

236925 25 h-index 233421 45 g-index

45 all docs

45 docs citations

45 times ranked

2427 citing authors

#	Article	IF	CITATIONS
1	Choline-Sigma-1R as an Additional Mechanism for Potentiation of Orexin by Cocaine. International Journal of Molecular Sciences, 2021, 22, 5160.	4.1	4
2	Assessment of Blood-Brain Barrier Permeability Using Miniaturized Fluorescence Microscopy in Freely Moving Rats. Methods in Molecular Biology, 2021, 2367, 123-135.	0.9	2
3	Acute cocaine administration alters permeability of blood-brain barrier in freely-moving rats— Evidence using miniaturized fluorescence microscopy. Drug and Alcohol Dependence, 2020, 206, 107637.	3.2	16
4	Direct evidence of bradycardic effect of omega-3 fatty acids acting on nucleus ambiguus. Neuroscience Letters, 2020, 735, 135196.	2.1	4
5	1-Chromonyl-5-Imidazolylpentadienone Demonstrates Anti-Cancer Action against TNBC and Exhibits Synergism with Paclitaxel. International Journal of Molecular Sciences, 2020, 21, 5777.	4.1	7
6	GPR55-mediated effects on brain microvascular endothelial cells and the blood–brain barrier. Neuroscience, 2019, 414, 88-98.	2.3	20
7	Choline Is an Intracellular Messenger Linking Extracellular Stimuli to IP3-Evoked Ca2+ Signals through Sigma-1 Receptors. Cell Reports, 2019, 26, 330-337.e4.	6.4	45
8	Effects of Platelet-Activating Factor on Brain Microvascular Endothelial Cells. Neuroscience, 2018, 377, 105-113.	2.3	31
9	Effects of VPAC1 activation in nucleus ambiguus neurons. Brain Research, 2017, 1657, 297-303.	2.2	4
10	HIV Tat excites D1 receptor-like expressing neurons from rat nucleus accumbens. Drug and Alcohol Dependence, 2017, 178, 7-14.	3.2	9
11	Mechanisms of modulation of brain microvascular endothelial cells function by thrombin. Brain Research, 2017, 1657, 167-175.	2.2	44
12	Modulation of cardiac vagal tone by bradykinin acting on nucleus ambiguus. Neuroscience, 2017, 365, 23-32.	2.3	13
13	Fusion of lysosomes with secretory organelles leads to uncontrolled exocytosis in the lysosomal storage disease mucolipidosis type <scp>IV</scp> . EMBO Reports, 2016, 17, 266-278.	4.5	39
14	Modulation of Calcium Entry by the Endo-lysosomal System. Advances in Experimental Medicine and Biology, 2016, 898, 423-447.	1.6	12
15	Cocaine inhibits store-operated Ca2+ entry in brain microvascular endothelial cells: critical role for sigma-1 receptors. Biochemical Journal, 2016, 473, 1-5.	3.7	39
16	Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by two-pore channel 2 inhibition. Journal of Cell Science, 2015, 128, 232-8.	2.0	148
17	Irisin evokes bradycardia by activating cardiac-projecting neurons of nucleus ambiguus. Physiological Reports, 2015, 3, e12419.	1.7	32
18	G proteinâ€coupled estrogen receptorâ€mediated effects on cytosolic calcium and nanomechanics in brain microvascular endothelial cells. Journal of Neurochemistry, 2015, 133, 629-639.	3.9	28

#	Article	IF	CITATIONS
19	Mechanisms of activation of nucleus accumbens neurons by cocaine via sigma-1 receptor–inositol 1,4,5-trisphosphate–transient receptor potential canonical channel pathways. Cell Calcium, 2015, 58, 196-207.	2.4	19
20	The Lysophosphatidylinositol Receptor GPR55 Modulates Pain Perception in the Periaqueductal Gray. Molecular Pharmacology, 2015, 88, 265-272.	2.3	48
21	HIV-1-Tat excites cardiac parasympathetic neurons of nucleus ambiguus and triggers prolonged bradycardia in conscious rats. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2014, 306, R814-R822.	1.8	13
22	Two-pore channels provide insight into the evolution of voltage-gated Ca ²⁺ and Na ⁺ channels. Science Signaling, 2014, 7, ra109.	3.6	98
23	Direct evidence of intracrine angiotensin II signaling in neurons. American Journal of Physiology - Cell Physiology, 2014, 306, C736-C744.	4.6	19
24	Differential Activation of Intracellular versus Plasmalemmal CB ₂ Cannabinoid Receptors. Biochemistry, 2014, 53, 4990-4999.	2.5	46
25	Evidence for role of acid-sensing ion channels in nucleus ambiguus neurons: essential differences in anesthetized versus awake rats. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 753-761.	1.5	2
26	Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Is a Second Messenger in Muscarinic Receptor-induced Contraction of Guinea Pig Trachea. Journal of Biological Chemistry, 2013, 288, 10986-10993.	3.4	16
27	Differential Activation of Cultured Neonatal Cardiomyocytes by Plasmalemmal Versus Intracellular G Protein-coupled Receptor 55. Journal of Biological Chemistry, 2013, 288, 22481-22492.	3.4	36
28	Aldosterone increases cardiac vagal tone via G protein oupled oestrogen receptor activation. Journal of Physiology, 2013, 591, 4223-4235.	2.9	43
29	Nesfatinâ€1 activates cardiac vagal neurons of nucleus ambiguus and elicits bradycardia in conscious rats. Journal of Neurochemistry, 2013, 126, 739-748.	3.9	33
30	Intracellular Endothelin Type B Receptor-driven Ca2+ Signal Elicits Nitric Oxide Production in Endothelial Cells. Journal of Biological Chemistry, 2012, 287, 41023-41031.	3.4	18
31	Urocortin 3 elevates cytosolic calcium in nucleus ambiguus neurons. Journal of Neurochemistry, 2012, 122, 1129-1136.	3.9	17
32	Mechanisms of G Protein-Coupled Estrogen Receptor-Mediated Spinal Nociception. Journal of Pain, 2012, 13, 742-754.	1.4	35
33	Agonist-selective effects of opioid receptor ligands on cytosolic calcium concentration in rat striatal neurons. Drug and Alcohol Dependence, 2012, 123, 277-281.	3.2	7
34	Intracellular Cannabinoid Type 1 (CB1) Receptors Are Activated by Anandamide. Journal of Biological Chemistry, 2011, 286, 29166-29174.	3.4	83
35	Intracellular angiotensin II activates rat myometrium. American Journal of Physiology - Cell Physiology, 2011, 301, C559-C565.	4.6	25
36	An Ancestral Deuterostome Family of Two-pore Channels Mediates Nicotinic Acid Adenine Dinucleotide Phosphate-dependent Calcium Release from Acidic Organelles. Journal of Biological Chemistry, 2010, 285, 2897-2901.	3.4	112

#	Article	IF	CITATIONS
37	An NAADP-gated Two-pore Channel Targeted to the Plasma Membrane Uncouples Triggering from Amplifying Ca2+ Signals. Journal of Biological Chemistry, 2010, 285, 38511-38516.	3.4	153
38	Acidic NAADP-sensitive Calcium Stores in the Endothelium. Journal of Biological Chemistry, 2010, 285, 37133-37137.	3 . 4	57
39	Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. Journal of Cell Biology, 2009, 186, 201-209.	5.2	376
40	NAADP-mediated channel â€~chatter' in neurons of the rat medulla oblongata. Biochemical Journal, 2009, 419, 91-99.	3.7	53
41	Nesfatin-1: Distribution and Interaction with a G Protein-Coupled Receptor in the Rat Brain. Endocrinology, 2007, 148, 5088-5094.	2.8	269
42	Smooth muscle-associated protein 8: Distribution and biological activity in the rat brain. Journal of Neuroscience Research, 2007, 85, 1789-1796.	2.9	2
43	Messenger-specific Role for Nicotinic Acid Adenine Dinucleotide Phosphate in Neuronal Differentiation. Journal of Biological Chemistry, 2006, 281, 15923-15928.	3.4	92
44	Insulin-like 6 immunoreactivity in the mouse brain and testis. Brain Research, 2005, 1040, 187-190.	2.2	14
45	Nicotinic Acid Adenine Dinucleotide Phosphate Potentiates Neurite Outgrowth. Journal of Biological Chemistry, 2005, 280, 5646-5650.	3.4	101