
Laura M Torres

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3598514/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Evaluation of the effects, on canopy arthropods, of two agricultural management systems to control pests in olive groves from north-east of Portugal. Chemosphere, 2007, 67, 131-139.	8.2	56
2	Influence of fruit traits on oviposition preference of the olive fly, Bactrocera oleae (Rossi) (Diptera:) Tj ETQq0 0 Scientia Horticulturae, 2012, 145, 127-135.	0 rgBT /Ov 3.6	verlock 10 Tf 5 31
3	Insect-associated fungi from naturally mycosed vine mealybug <i>Planococcus ficus</i> (Signoret) (Hemiptera: Pseudococcidae). Biocontrol Science and Technology, 2018, 28, 122-141.	1.3	30
4	Entomopathogenic fungi in Portuguese vineyards soils: suggesting a â€~Galleria-Tenebrio-bait method' as bait-insects Galleria and Tenebrio significantly underestimate the respective recoveries of Metarhizium (robertsii) and Beauveria (bassiana). MycoKeys, 2018, 38, 1-23.	1.9	29
5	Effects of pollen, sugars and honeydew on lifespan and nutrient levels of Episyrphus balteatus. BioControl, 2015, 60, 47-57.	2.0	26
6	Egg parasitoids of the genus Trichogramma (Hymenoptera, Trichogrammatidae) in olive groves of the Mediterranean region. Biological Control, 2007, 40, 48-56.	3.0	24
7	Effect of floral resources on longevity and nutrient levels of Episyrphus balteatus (Diptera:) Tj ETQq1 1 0.78431	4 rgBT /O	verlock 10 Tf
8	Does habitat heterogeneity affect the diversity of epigaeic arthropods in vineyards?. Agricultural and Forest Entomology, 2018, 20, 366-379.	1.3	20
9	The effect of sooty mold on fluorescence and gas exchange properties of olive tree. Turkish Journal of Biology, 2013, 37, 620-628.	0.8	17
10	Higher longevity and fecundity of Chrysoperla carnea, a predator of olive pests, on some native flowering Mediterranean plants. Agronomy for Sustainable Development, 2016, 36, 1.	5.3	15
11	ls a biofix necessary for predicting the flight phenology of Lobesia botrana in Douro Demarcated Region vineyards?. Crop Protection, 2018, 110, 57-64.	2.1	15
12	The use of the cumulative degree-days to predict olive fly, Bactrocera oleae (Rossi), activity in traditional olive groves from the northeast of Portugal. Journal of Pest Science, 2011, 84, 187-197.	3.7	14
13	Natural mortality of immature stages of <i>Bactrocera oleae</i> (Diptera: Tephritidae) in traditional olive groves from north-eastern Portugal. Biocontrol Science and Technology, 2012, 22, 837-854.	1.3	12
14	Soil Arthropods in the Douro Demarcated Region Vineyards: General Characteristics and Ecosystem Services Provided. Sustainability, 2021, 13, 7837.	3.2	12
15	A cohort-based modelling approach for managing olive moth Prays oleae (Bernard, 1788) populations in olive orchards. Ecological Modelling, 2015, 296, 46-56.	2.5	11
16	Effects of ten naturally occurring sugars on the reproductive success of the green lacewing, Chrysoperla carnea. BioControl, 2016, 61, 57-67.	2.0	9
17	Identification of predator–prey relationships between coccinellids and Saissetia oleae (Hemiptera:) Tj ETQq1 82, 101-108.	1 0.78431 3.7	4 rgBT /Overlo 8
18	Soil Chemical Properties Barely Perturb the Abundance of Entomopathogenic Fusarium oxysporum: A Case Study Using a Generalized Linear Mixed Model for Microbial Pathogen Occurrence Count Data. Pathogens, 2018, 7, 89.	2.8	8

LAURA M TORRES

#	Article	IF	CITATIONS
19	Ants (Hymenoptera: Formicidae) and Spiders (Araneae) Co-occurring on the Ground of Vineyards from Douro Demarcated Region. Sociobiology, 2017, 64, 404.	0.5	7
20	Native Mediterranean plants as potential food sources for natural enemies of insect pests in olive groves. Ecological Research, 2017, 32, 459-459.	1.5	6
21	The functional agrobiodiversity in the Douro demarcated region viticulture: utopia or reality? Arthropods as a case-study – A review. Ciencia E Tecnica Vitivinicola, 2019, 34, 102-114.	0.9	6
22	Effect of Soil Chemical Properties on the Occurrence and Distribution of Entomopathogenic Fungi in Portuguese Grapevine Fields. Pathogens, 2021, 10, 137.	2.8	6
23	The use of trap captures to forecast infestation by the olive fly, <i>Bactrocera oleae</i> (Rossi) (Diptera: Tephritidae), in traditional olive groves in north-eastern Portugal. International Journal of Pest Management, 2013, 59, 279-286.	1.8	5
24	Entomopathogenic fungi in Portuguese vineyards soils: suggesting a â€~Calleria-Tenebrio-bait method' as bait-insects Galleria and Tenebrio significantly underestimate the respective recoveries of Metarhizium (robertsii) and Beauveria (bassiana). MycoKeys, 0, 38, 1-23.	1.9	4
25	Evaluating potential sugar food sources from the olive grove agroecosystems for Prays oleae parasitoid Chelonus elaeaphilus. Biocontrol Science and Technology, 2017, 27, 686-695.	1.3	3
26	Hymenoptera parasitoid complex of Prays oleae (Bernard)(Lepidoptera: Praydidae) in Portugal. Turkish Journal of Zoology, 2017, 41, 502-512.	0.9	3
27	Does natural vegetation from olive groves benefit the olive moth, <i>Prays oleae</i> ?. Journal of Applied Entomology, 2021, 145, 406-416.	1.8	2
28	Parasitoids of <i>Lobesia botrana</i> (Lepidoptera: Tortricidae) in the Douro Demarcated Region vineyards and the prospects for enhancing conservation biological control. Bulletin of Entomological Research, 2022, , 1-10.	1.0	2
29	Confusão sexual contra a traça-da-uva, <i>Lobesia botrana</i> , na região Demarcada do Douro usando dois modelos de difusores de feromona: ISONET-LTT BIO [®] E ISONET-LTT [®] . Ciencia E Tecnica Vitivinicola, 2022, 37, 100-115.	0.9	1