Alejandro Buschiazzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3597318/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	What Makes a Bacterial Species Pathogenic?:Comparative Genomic Analysis of the Genus Leptospira. PLoS Neglected Tropical Diseases, 2016, 10, e0004403.	3.0	253
2	The Crystal Structure and Mode of Action of Trans-Sialidase, a Key Enzyme in Trypanosoma cruzi Pathogenesis. Molecular Cell, 2002, 10, 757-768.	9.7	214
3	Structural Insights into the Catalytic Mechanism of Trypanosoma cruzi trans-Sialidase. Structure, 2004, 12, 775-784.	3.3	197
4	Trypanosoma cruziTrans-sialidase Operates through a Covalent Sialylâ^'Enzyme Intermediate:Â Tyrosine Is the Catalytic Nucleophile. Journal of the American Chemical Society, 2003, 125, 7532-7533.	13.7	188
5	Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation. EMBO Journal, 2004, 23, 3196-3205.	7.8	155
6	Structural plasticity and catalysis regulation of a thermosensor histidine kinase. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16185-16190.	7.1	155
7	Structural basis of sialyltransferase activity in trypanosomal sialidases. EMBO Journal, 2000, 19, 16-24.	7.8	124
8	Active nuclear import and cytoplasmic retention of activation-induced deaminase. Nature Structural and Molecular Biology, 2009, 16, 517-527.	8.2	124
9	Molecular Recognition and Interfacial Catalysis by the Essential Phosphatidylinositol Mannosyltransferase PimA from Mycobacteria. Journal of Biological Chemistry, 2007, 282, 20705-20714.	3.4	121
10	Data publication with the structural biology data grid supports live analysis. Nature Communications, 2016, 7, 10882.	12.8	113
11	Two-Component Sensing and Regulation: How Do Histidine Kinases Talk with Response Regulators at the Molecular Level?. Annual Review of Microbiology, 2019, 73, 507-528.	7.3	108
12	Structural basis of lipid biosynthesis regulation in Gram-positive bacteria. EMBO Journal, 2006, 25, 4074-4083.	7.8	104
13	Identification of the gene(s) coding for the trans-sialidase of Trypanosoma cruzi EMBO Journal, 1992, 11, 1705-1710.	7.8	101
14	A novel flagellar sheath protein, FcpA, determines filament coiling, translational motility and virulence for the <i>Leptospira</i> spirochete. Molecular Microbiology, 2016, 101, 457-470.	2.5	93
15	Crystal structure, catalytic mechanism, and mitogenic properties of Trypanosoma cruzi proline racemase. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 1705-1710.	7.1	92
16	A New Generation of Specific <i>Trypanosoma cruzi trans</i> ‣ialidase Inhibitors. Angewandte Chemie - International Edition, 2008, 47, 2700-2703.	13.8	77
17	Structural and Kinetic Analysis of Two Covalent Sialosyl-Enzyme Intermediates on Trypanosoma rangeli Sialidase. Journal of Biological Chemistry, 2006, 281, 4149-4155.	3.4	75
18	Structural insights into sialic acid enzymology. Current Opinion in Chemical Biology, 2008, 12, 565-572.	6.1	70

#	Article	IF	CITATIONS
19	Discovery of novel inhibitors of Trypanosoma cruzi trans-sialidase from in silico screening. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 589-596.	2.2	68
20	The High Resolution Structures of Free and Inhibitor-bound Trypanosoma rangeli Sialidase and its Comparison with T.cruziTrans-sialidase. Journal of Molecular Biology, 2003, 325, 773-784.	4.2	67
21	Isolation of pathogenic Leptospira strains from naturally infected cattle in Uruguay reveals high serovar diversity, and uncovers a relevant risk for human leptospirosis. PLoS Neglected Tropical Diseases, 2018, 12, e0006694.	3.0	57
22	Kinetic and Mechanistic Analysis of Trypanosoma cruzi Trans-Sialidase Reveals a Classical Ping-Pong Mechanism with Acid/Base Catalysis. Biochemistry, 2008, 47, 3507-3512.	2.5	55
23	The trans -sialidase from the african trypanosome Trypanosoma brucei. FEBS Journal, 2002, 269, 2941-2950.	0.2	54
24	Phylogenetic analysis of bovine leukemia viruses isolated in South America reveals diversification in seven distinct genotypes. Archives of Virology, 2010, 155, 481-489.	2.1	54
25	Regulation of signaling directionality revealed by 3D snapshots of a kinase:regulator complex in action. ELife, 2016, 5, .	6.0	54
26	Probing molecular function of trypanosomal sialidases: single point mutations can change substrate specificity and increase hydrolytic activity. Glycobiology, 2001, 11, 305-311.	2.5	51
27	Structural and Molecular Basis of the Peroxynitrite-mediated Nitration and Inactivation of Trypanosoma cruzi Iron-Superoxide Dismutases (Fe-SODs) A and B. Journal of Biological Chemistry, 2014, 289, 12760-12778.	3.4	51
28	Allosteric Activation of Bacterial Response Regulators: the Role of the Cognate Histidine Kinase Beyond Phosphorylation. MBio, 2014, 5, e02105.	4.1	50
29	A coiled coil switch mediates cold sensing by the thermosensory protein <scp>DesK</scp> . Molecular Microbiology, 2015, 98, 258-271.	2.5	50
30	Structural and Enzymatic Insights into the ATP Binding and Autophosphorylation Mechanism of a Sensor Histidine Kinase. Journal of Biological Chemistry, 2010, 285, 24892-24903.	3.4	46
31	Trypanosoma rangeli sialidase: cloning, expression and similarity to T.cruzi trans-sialidase. Glycobiology, 1997, 7, 1167-1173.	2.5	44
32	Benzoic acid and pyridine derivatives as inhibitors of Trypanosoma cruzi trans-sialidase. Bioorganic and Medicinal Chemistry, 2007, 15, 2106-2119.	3.0	41
33	Structural Basis for Feed-Forward Transcriptional Regulation of Membrane Lipid Homeostasis in Staphylococcus aureus. PLoS Pathogens, 2013, 9, e1003108.	4.7	37
34	Trypanosoma cruzi trans-Sialidase in Complex with a Neutralizing Antibody: Structure/Function Studies towards the Rational Design of Inhibitors. PLoS Pathogens, 2012, 8, e1002474.	4.7	36
35	Structural insights into bacterial resistance to cerulenin. FEBS Journal, 2014, 281, 2324-2338.	4.7	35
36	Consecutive interactions with HSP90 and eEF1A underlie a functional maturation and storage pathway of AID in the cytoplasm. Journal of Experimental Medicine. 2015. 212. 581-596.	8.5	35

Alejandro Buschiazzo

#	Article	IF	CITATIONS
37	Molecular adaptations of NADP-malic enzyme for its function in C4 photosynthesis in grasses. Nature Plants, 2019, 5, 755-765.	9.3	35
38	Evidence of Adaptability in Metal Coordination Geometry and Active-Site Loop Conformation among B1 Metallo-β-lactamases,. Biochemistry, 2010, 49, 7930-7938.	2.5	33
39	Structural Coupling between Autokinase and Phosphotransferase Reactions in a Bacterial Histidine Kinase. Structure, 2017, 25, 939-944.e3.	3.3	33
40	Conformational plasticity of a native retroviral capsid revealed by x-ray crystallography. Science, 2015, 349, 95-98.	12.6	32
41	Crystal Structure of the Metallo-β-Lactamase GOB in the Periplasmic Dizinc Form Reveals an Unusual Metal Site. Antimicrobial Agents and Chemotherapy, 2016, 60, 6013-6022.	3.2	32
42	Structure of a human IgA1 Fab fragment at 1.55â€Ã resolution: potential effect of the constant domains on antigen-affinity modulation. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 388-397.	2.5	29
43	Structural Basis of Pullulanase Membrane Binding and Secretion Revealed by X-Ray Crystallography, Molecular Dynamics and Biochemical Analysis. Structure, 2016, 24, 92-104.	3.3	26
44	An asymmetric sheath controls flagellar supercoiling and motility in the leptospira spirochete. ELife, 2020, 9, .	6.0	26
45	Medium scale production and purification to homogeneity of a recombinant trans-sialidase from Trypanosoma cruzi. Cellular and Molecular Biology, 1996, 42, 703-10.	0.9	26
46	<i>SIMBAD</i> : a sequence-independent molecular-replacement pipeline. Acta Crystallographica Section D: Structural Biology, 2018, 74, 595-605.	2.3	25
47	Sequence of the gene for a Trypanosoma cruzi protein antigenic during the chronic phase of human Chagas disease. Molecular and Biochemical Parasitology, 1992, 54, 125-128.	1.1	24
48	Sequence of a Trypanosoma rangeli gene closely related to Trypanosoma cruzi trans-sialidase. Molecular and Biochemical Parasitology, 1993, 62, 115-116.	1.1	23
49	<pre><scp>H</scp>em<scp>R</scp> is an <scp>O</scp>mp<scp>R</scp>/<scp>P</scp>ho<scp>B</scp>â€like response regulator from <scp><i>L</i></scp><i>eptospira</i>, which simultaneously effects transcriptional activation and repression of key haem metabolism genes. Molecular Microbiology, 2014. 94. 340-352.</pre>	2.5	23
50	Causes of abortion in dairy cows in Uruguay. Pesquisa Veterinaria Brasileira, 2020, 40, 325-332.	0.5	21
51	FcpB Is a Surface Filament Protein of the Endoflagellum Required for the Motility of the Spirochete Leptospira. Frontiers in Cellular and Infection Microbiology, 2018, 8, 130.	3.9	20
52	Continuous fluorimetric assay for high-throughput screening of inhibitors of trans-sialidase from Trypanosoma cruzi. Analytical Biochemistry, 2006, 357, 302-304.	2.4	19
53	Crystal structure of an enzymatically inactive trans-sialidase-like lectin from Trypanosoma cruzi: The carbohydrate binding mechanism involves residual sialidase activity. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 1154-1161.	2.3	19
54	The Crystal Structure of the MAP Kinase LmaMPK10 from Leishmania Major Reveals Parasite-Specific Features and Regulatory Mechanisms. Structure, 2012, 20, 1649-1660.	3.3	19

Alejandro Buschiazzo

#	Article	IF	CITATIONS
55	Lvr, a Signaling System That Controls Global Gene Regulation and Virulence in Pathogenic Leptospira. Frontiers in Cellular and Infection Microbiology, 2018, 8, 45.	3.9	19
56	Mycobacterium tuberculosis FasR senses long fatty acyl-CoA through a tunnel and a hydrophobic transmission spine. Nature Communications, 2020, 11, 3703.	12.8	16
57	Swapping FAD Binding Motifs between Plastidic and Bacterial Ferredoxin-NADP(H) Reductases. Biochemistry, 2011, 50, 2111-2122.	2.5	15
58	The Crystal Structure of Rv0813c from Mycobacterium tuberculosis Reveals a New Family of Fatty Acid-Binding Protein-Like Proteins in Bacteria. Journal of Bacteriology, 2007, 189, 1899-1904.	2.2	14
59	The crystal structure of <i>M. leprae</i> ML2640c defines a large family of putative Sâ€adenosylmethionineâ€dependent methyltransferases in mycobacteria. Protein Science, 2007, 16, 1896-1904.	7.6	14
60	Crystallization of FcpA fromLeptospira, a novel flagellar protein that is essential for pathogenesis. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 123-129.	0.8	13
61	Conformational plasticity of the response regulator CpxR, a key player in Gammaproteobacteria virulence and drug-resistance. Journal of Structural Biology, 2018, 204, 165-171.	2.8	13
62	Crystallization and preliminary crystallographic analysis of PimA, an essential mannosyltransferase fromMycobacterium smegmatis. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 518-520.	0.7	12
63	AID overexpression leads to aggressive murine CLL and nonimmunoglobulin mutations that mirror human neoplasms. Blood, 2021, 138, 246-258.	1.4	10
64	3D cryo-EM imaging of bacterial flagella: Novel structural and mechanistic insights into cell motility. Journal of Biological Chemistry, 2022, 298, 102105.	3.4	10
65	Glucose-6-Phosphate Dehydrogenase from the Human Pathogen Trypanosoma cruzi Evolved Unique Structural Features to Support Efficient Product Formation. Journal of Molecular Biology, 2019, 431, 2143-2162.	4.2	9
66	Expression, crystallization and preliminary X-ray crystallographic analysis of glucose-6-phosphate dehydrogenase from the human pathogen <i>Trypanosoma cruzi</i> in complex with substrate. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1457-1461.	0.7	8
67	Structure ofMycobacterium tuberculosisRv2714, a representative of a duplicated gene family in Actinobacteria. Acta Crystallographica Section F: Structural Biology Communications, 2009, 65, 972-977.	0.7	6
68	Preliminary crystallographic studies of glycogen synthase fromAgrobacterium tumefaciens. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 526-528.	2.5	5
69	The crystal structure of the malic enzyme from <i>Candidatus</i> Phytoplasma reveals the minimal structural determinants for a malic enzyme. Acta Crystallographica Section D: Structural Biology, 2018, 74, 332-340.	2.3	5
70	Snapshots of the Signaling Complex DesK:DesR in Different Functional States Using Rational Mutagenesis and X-ray Crystallography. Bio-protocol, 2017, 7, e2510.	0.4	5
71	Allostery and protein plasticity: the keystones for bacterial signaling and regulation. Biophysical Reviews, 2021, 13, 943-953.	3.2	5
72	Role of the major determinant of polar flagellation FlhG in the endoflagellaâ€containing spirochete Leptospira. Molecular Microbiology, 2021, 116, 1392-1406.	2.5	3

#	Article	IF	CITATIONS
73	Crystal structure of <i>Mycobacterium tuberculosis</i> LppA, a lipoprotein confined to pathogenic mycobacteria. Proteins: Structure, Function and Bioinformatics, 2010, 78, 769-772.	2.6	2
74	Draft Genome Sequences of 40 Pathogenic <i>Leptospira</i> Strains Isolated from Cattle in Uruguay. Microbiology Resource Announcements, 2019, 8, .	0.6	2
75	Protein Dynamics in Phosphoryl-Transfer Signaling Mediated by Two-Component Systems. Methods in Molecular Biology, 2020, 2077, 1-18.	0.9	1
76	Consecutive interactions with HSP90 and eEF1A underlie a functional maturation and storage pathway of AID in the cytoplasm. Journal of Cell Biology, 2015, 209, 2091OIA64.	5.2	0
77	The tyrosine aminotransferase from Trypanosoma rangeli: sequence and genomic characterization. FEMS Microbiology Letters, 2000, 189, 253-257.	1.8	0