Simona Buelli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3596893/publications.pdf

Version: 2024-02-01

28 1,922 21 28 papers citations h-index g-index

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	<i>MYO1E</i> Mutations and Childhood Familial Focal Segmental Glomerulosclerosis. New England Journal of Medicine, 2011, 365, 295-306.	27.0	221
2	Alternative Pathway Activation of Complement by Shiga Toxin Promotes Exuberant C3a Formation That Triggers Microvascular Thrombosis. Journal of Immunology, 2011, 187, 172-180.	0.8	220
3	Shiga toxin-associated hemolytic uremic syndrome: pathophysiology of endothelial dysfunction. Pediatric Nephrology, 2010, 25, 2231-2240.	1.7	156
4	In Response to Protein Load Podocytes Reorganize Cytoskeleton and Modulate Endothelin-1 Gene. American Journal of Pathology, 2005, 166, 1309-1320.	3.8	151
5	Protein overload-induced NF-kappaB activation in proximal tubular cells requires H(2)O(2) through a PKC-dependent pathway. Journal of the American Society of Nephrology: JASN, 2002, 13, 1179-89.	6.1	135
6	Protein Overload Induces Fractalkine Upregulation in Proximal Tubular Cells through Nuclear Factor ήB– and p38 Mitogen-Activated Protein Kinase–Dependent Pathways. Journal of the American Society of Nephrology: JASN, 2003, 14, 2436-2446.	6.1	118
7	SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight, 2018, 3, .	5.0	114
8	Shigatoxin-Induced Endothelin-1 Expression in Cultured Podocytes Autocrinally Mediates Actin Remodeling. American Journal of Pathology, 2006, 169, 1965-1975.	3.8	92
9	Proteasomal Processing of Albumin by Renal Dendritic Cells Generates Antigenic Peptides. Journal of the American Society of Nephrology: JASN, 2009, 20, 123-130.	6.1	88
10	Permselective Dysfunction of Podocyte-Podocyte Contact upon Angiotensin II Unravels the Molecular Target for Renoprotective Intervention. American Journal of Pathology, 2006, 168, 1073-1085.	3.8	82
11	Membranous Nephropathy Associated With IgG4-Related Disease. American Journal of Kidney Diseases, 2011, 58, 272-275.	1.9	64
12	β-Arrestin-1 Drives Endothelin-1–Mediated Podocyte Activation and Sustains Renal Injury. Journal of the American Society of Nephrology: JASN, 2014, 25, 523-533.	6.1	63
13	Shiga Toxin Promotes Podocyte Injury in Experimental Hemolytic Uremic Syndrome via Activation of the Alternative Pathway of Complement. Journal of the American Society of Nephrology: JASN, 2014, 25, 1786-1798.	6.1	52
14	C3a receptor blockade protects podocytes from injury in diabetic nephropathy. JCI Insight, 2020, 5, .	5.0	46
15	Effects of MCP-1 Inhibition by Bindarit Therapy in a Rat Model of Polycystic Kidney Disease. Nephron, 2015, 129, 52-61.	1.8	43
16	Angiotensin II Contributes to Diabetic Renal Dysfunction in Rodents and Humans via Notch1/Snail Pathway. American Journal of Pathology, 2013, 183, 119-130.	3.8	39
17	Fractalkine and CX3CR1 Mediate Leukocyte Capture by Endothelium in Response to Shiga Toxin. Journal of Immunology, 2008, 181, 1460-1469.	0.8	37
18	Shiga toxin triggers endothelial and podocyte injury: the role of complement activation. Pediatric Nephrology, 2019, 34, 379-388.	1.7	34

#	Article	IF	CITATION
19	Protein load impairs factor H binding promoting complement-dependent dysfunction of proximal tubular cells. Kidney International, 2009, 75, 1050-1059.	5.2	28
20	Mitochondrial-dependent Autoimmunity in Membranous Nephropathy of IgG4-related Disease. EBioMedicine, 2015, 2, 456-466.	6.1	24
21	Complement Activation Contributes to the Pathophysiology of Shiga Toxin-Associated Hemolytic Uremic Syndrome. Microorganisms, 2019, 7, 15.	3.6	23
22	A previously unrecognized role of C3a in proteinuric progressive nephropathy. Scientific Reports, 2016, 6, 28445.	3.3	22
23	Endothelin-targeted new treatments for proteinuric and inflammatory glomerular diseases: focus on the added value to anti-renin-angiotensin system inhibition. Pediatric Nephrology, 2021, 36, 763-775.	1.7	17
24	Sirtuin3 Dysfunction Is the Key Determinant of Skeletal Muscle Insulin Resistance by Angiotensin II. PLoS ONE, 2015, 10, e0127172.	2.5	16
25	Endothelin in Chronic Proteinuric Kidney Disease. Contributions To Nephrology, 2011, 172, 171-184.	1.1	15
26	Activation of porcine endothelium in response to xenogeneic serum causes thrombosis independently of platelet activation. Xenotransplantation, 2005, 12, 110-120.	2.8	14
27	Untangling the Knot in Diabetic Nephropathy: The Unanticipated Role of Glycocalyx in the Antiproteinuric Effect of Endothelin Receptor Antagonists. Diabetes, 2016, 65, 2115-2117.	0.6	5
28	Shiga Toxin 2 Triggers C3a-Dependent Glomerular and Tubular Injury through Mitochondrial Dysfunction in Hemolytic Uremic Syndrome, Cells, 2022, 11, 1755.	4.1	3