Isabelle Le Ber

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3596766/publications.pdf

Version: 2024-02-01

46 2,018 20 43 papers citations h-index g-index 3323

46 46 46 3323 all docs docs citations times ranked citing authors

#	Article	IF	Citations
1	A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain, 2014, 137, 2329-2345.	7.6	377
2	Neurofilament light chain: a biomarker for genetic frontotemporal dementia. Annals of Clinical and Translational Neurology, 2016, 3, 623-636.	3.7	207
3	Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurology, The, 2020, 19, 145-156.	10.2	175
4	Demographic, neurological and behavioural characteristics and brain perfusion SPECT in frontal variant of frontotemporal dementia. Brain, 2006, 129, 3051-3065.	7.6	158
5	Phenotype difference between ALS patients with expanded repeats in <i>C9ORF72</i> and patients with mutations in other ALS-related genes. Journal of Medical Genetics, 2012, 49, 258-263.	3.2	157
6	Early Cognitive, Structural, and Microstructural Changes in Presymptomatic <i>C9orf72</i> Carriers Younger Than 40 Years. JAMA Neurology, 2018, 75, 236.	9.0	108
7	Potential genetic modifiers of disease risk and age at onset in patients with frontotemporal lobar degeneration and GRN mutations: a genome-wide association study. Lancet Neurology, The, 2018, 17, 548-558.	10.2	97
8	Screening of CHCHD10 in a French cohort confirms the involvement of this gene in frontotemporal dementia with amyotrophic lateral sclerosis patients. Neurobiology of Aging, 2014, 35, 2884.e1-2884.e4.	3.1	95
9	Extensive White Matter Involvement in Patients With Frontotemporal Lobar Degeneration. JAMA Neurology, 2014, 71, 1562.	9.0	68
10	Homozygous GRN mutations: new phenotypes and new insights into pathological and molecular mechanisms. Brain, 2020, 143, 303-319.	7.6	54
11	Neurite density is reduced in the presymptomatic phase of <i>C9orf72</i> disease. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 387-394.	1.9	50
12	Progression of Behavioral Disturbances and Neuropsychiatric Symptoms in Patients With Genetic Frontotemporal Dementia. JAMA Network Open, 2021, 4, e2030194.	5.9	42
13	Causative Mutations and Genetic Risk Factors in Sporadic Early Onset Alzheimer's Disease Before 51 Years. Journal of Alzheimer's Disease, 2019, 71, 227-243.	2.6	39
14	Relations between C9orf72 expansion size in blood, age at onset, age at collection and transmission across generations in patients and presymptomatic carriers. Neurobiology of Aging, 2019, 74, 234.e1-234.e8.	3.1	38
15	Lateral Temporal Lobe: An Early Imaging Marker of the Presymptomatic GRN Disease?. Journal of Alzheimer's Disease, 2015, 47, 751-759.	2.6	34
16	Adult-Onset Leukoencephalopathy with Axonal Spheroids and Pigmented Glia: An MRI Study of 16 French Cases. American Journal of Neuroradiology, 2018, 39, 1657-1661.	2.4	31
17	Why do patients with neurodegenerative frontal syndrome fail to answer: †In what way are an orange and a banana alike?'. Brain, 2015, 138, 456-471.	7.6	28
18	Semantic and nonfluent aphasic variants, secondarily associated with amyotrophic lateral sclerosis, are predominant frontotemporal lobar degeneration phenotypes in <i>TBK1</i> carriers. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2015, 1, 481-486.	2.4	26

#	Article	IF	CITATIONS
19	Plasma microRNA signature in presymptomatic and symptomatic subjects with C9orf72-associated frontotemporal dementia and amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 485-493.	1.9	25
20	Plasma NfL levels and longitudinal change rates in <i>C9orf72</i> and <i>GRN</i> -associated diseases: from tailored references to clinical applications. Journal of Neurology, Neurosurgery and Psychiatry, 2021, 92, 1278-1288.	1.9	25
21	Plasma progranulin levels for frontotemporal dementia in clinical practice: a 10-year French experience. Neurobiology of Aging, 2020, 91, 167.e1-167.e9.	3.1	24
22	Primary Progressive Aphasia Associated With <i>GRN</i> Mutations. Neurology, 2021, 97, e88-e102.	1.1	23
23	Interrupted CAG expansions in ATXN2 gene expand the genetic spectrum of frontotemporal dementias. Acta Neuropathologica Communications, 2018, 6, 41.	5.2	21
24	Novel VCP mutations expand the mutational spectrum of frontotemporal dementia. Neurobiology of Aging, 2018, 72, 187.e11-187.e14.	3.1	19
25	Isolated parkinsonism is an atypical presentation of GRN and C9orf72 gene mutations. Parkinsonism and Related Disorders, 2020, 80, 73-81.	2.2	13
26	Reply: Are CHCHD10 mutations indeed associated with familial amyotrophic lateral sclerosis?. Brain, 2014, 137, e314-e314.	7.6	9
27	Primary progressive aphasias associated with C9orf72 expansions: Another side of the story. Cortex, 2021, 145, 145-159.	2.4	9
28	CSF sTREM2 is elevated in a subset in GRN-related frontotemporal dementia. Neurobiology of Aging, 2021, 103, 158.e1-158.e5.	3.1	8
29	Evaluation of CSF1R â€related adult onset leukoencephalopathy with axonal spheroids and pigmented glia diagnostic criteria. European Journal of Neurology, 2022, 29, 329-334.	3.3	8
30	Comparison of clinical rating scales in genetic frontotemporal dementia within the GENFI cohort. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 158-168.	1.9	7
31	<i>SLITRK2</i> , an X-linked modifier of the age at onset in <i>C9orf72</i> frontotemporal lobar degeneration. Brain, 2021, 144, 2798-2811.	7.6	7
32	Questioning the causality of HTT CAG-repeat expansions in FTD/ALS. Neuron, 2021, 109, 1945-1946.	8.1	5
33	Reply: Two novel mutations in conserved codons indicate that CHCHD10 is a gene associated with motor neuron disease. Brain, 2014, 137, e310-e310.	7.6	4
34	Clinical Update on C9orf72: Frontotemporal Dementia, Amyotrophic Lateral Sclerosis, and Beyond. Advances in Experimental Medicine and Biology, 2021, 1281, 67-76.	1.6	4
35	Reply: Mutations in the CHCHD10 gene are a common cause of familial amyotrophic lateral sclerosis. Brain, 2014, 137, e312-e312.	7.6	3
36	Reply: IsCHCHD10Pro34Ser pathogenic for frontotemporal dementia and amyotrophic lateral sclerosis?. Brain, 2015, 138, e386-e386.	7.6	3

3

#	Article	lF	CITATIONS
37	The missense p.Trp7Arg mutation in GRN gene leads to progranulin haploinsufficiency. Neurobiology of Aging, 2020, 85, 154.e9-154.e11.	3.1	3
38	Progressive phonagnosia in a telephone operator carrying a C9orf72 expansion. Cortex, 2020, 132, 92-98.	2.4	3
39	Dissemination in time and space in presymptomatic granulin mutation carriers: a GENFI spatial chronnectome study. Neurobiology of Aging, 2021, 108, 155-167.	3.1	3
40	Reply: A distinct clinical phenotype in a German kindred with motor neuron disease carrying aCHCHD10mutation: Table 1. Brain, 2015, 138, e377-e377.	7.6	2
41	Examining empathy deficits across familial forms of frontotemporal dementia within the GENFI cohort. Cortex, 2022, 150, 12-28.	2.4	2
42	Autosomal recessive cerebellar ataxias with oculomotor apraxia. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2012, 103, 333-341.	1.8	1
43	Reply: <i>CHCHD10</i> mutations in Italian patients with sporadic amyotrophic lateral sclerosis. Brain, 2015, 138, e373-e373.	7.6	1
44	Structural brain splitting is a hallmark of Granulin-related frontotemporal dementia. Neurobiology of Aging, 2022, , .	3.1	1
45	The <scp>CBlâ€R</scp> detects early behavioural impairment in genetic frontotemporal dementia. Annals of Clinical and Translational Neurology, 2022, 9, 644-658.	3.7	1
46	Reply: High prevalence of CHCHD10 mutations in patients with frontotemporal dementia from China: Table 1. Brain, 2016, 139, e22-e22.	7.6	0