
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3595372/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene-based plasmonic metamaterial for terahertz laser transistors. Nanophotonics, 2022, 11, 1677-1696.	6.0	15
2	Broadband reduction of phase noise in a spatially extended tunnelâ€diode oscillator through multiple selfâ€injection locking. International Journal of Circuit Theory and Applications, 2022, 50, 1342-1352.	2.0	1
3	Selfâ€sustained solitary waves in a tunnel diode oscillator lattice and their applications in frequency division. International Journal of Circuit Theory and Applications, 2021, 49, 505-512.	2.0	4
4	Transition Dynamics of Multistable Tunnel-Diode Oscillator Used for Effective Amplitude Modulation. IEICE Transactions on Electronics, 2021, E104.C, 40-43.	0.6	0
5	Submillimeter-Wave Multiphase Oscillation Using Traveling Pulses in a Resonant-Tunneling Diode-Oscillator Lattice. Journal of Infrared, Millimeter, and Terahertz Waves, 2021, 42, 426-445.	2.2	8
6	Generation of Large-Amplitude Pulses through the Pulse Shortening Superposed in Series-Connected Tunnel-Diode Transmission Line. IEICE Transactions on Electronics, 2021, E104.C, 394-397.	0.6	0
7	Interaction of Self-Sustained Pulses in Tunnel-Diode Oscillator Lattices. Mathematical Problems in Engineering, 2021, 2021, 1-14.	1.1	1
8	Dissipative Discrete Breathers in Series-Connected Tunnel Diode Oscillator Lattice. Journal of the Physical Society of Japan, 2020, 89, 074005.	1.6	4
9	Self-injection Locking of Rotary Traveling Pulses in Resonant-Tunneling-Diode Transmission-Line Loop. Journal of Infrared, Millimeter, and Terahertz Waves, 2020, 41, 590-604.	2.2	0
10	Injection Locking of Rotary Dissipative Solitons in Closed Traveling-Wave Field-Effect Transistor. IEICE Transactions on Electronics, 2020, E103.C, 693-696.	0.6	0
11	Leapfrogging solitary waves in coupled traveling-wave field-effect transistors. Nonlinear Dynamics, 2019, 97, 1359-1369.	5.2	0
12	Dynamics of traveling pulses developed in a tunnel diode oscillator ring for multiphase oscillation. Nonlinear Dynamics, 2019, 95, 2729-2743.	5.2	11
13	Frequency Divider Using One-Dimensional Tunnel-Diode Oscillator Lattice Systems. IEICE Transactions on Electronics, 2019, E102.C, 845-848.	0.6	2
14	Fullâ€wave analysis of traveling pulses developed in a system of transmission lines with regularly spaced resonantâ€ŧunneling diodes. International Journal of Circuit Theory and Applications, 2018, 46, 671-682.	2.0	4
15	Characterization of a hard-type oscillator using series-connected tunnel diodes. IEICE Electronics Express, 2018, 15, 20180355-20180355.	0.8	6
16	Synchronization of dissipative solitons in a system of closed traveling-wave field-effect transistors. Nonlinear Dynamics, 2018, 94, 711-721.	5.2	3
17	Modulation of Pulse Train Using Leapfrogging Pulses Developed in Unbalanced Coupled Nonlinear Transmission Lines. Mathematical Problems in Engineering, 2018, 2018, 1-7.	1.1	2
18	Dynamics of dissipative solitons developed in a closed travelingâ€wave fieldâ€effect transistor. International Journal of Circuit Theory and Applications, 2018, 46, 2000-2010.	2.0	4

#	Article	IF	CITATIONS
19	Large-amplitude voltage edge oscillating in a transmission line with regularly spaced series-connected resonant-tunneling diodes. IEICE Electronics Express, 2018, 15, 20180678-20180678.	0.8	3
20	Mutual synchronization of oscillating pulse edges in point-coupled transmission lines with regularly spaced tunnel diodes. Communications in Nonlinear Science and Numerical Simulation, 2017, 42, 236-246.	3.3	4
21	Multiphase Oscillator Using Traveling Pulses Developed in a System of Transmission Lines with Regularly Spaced Resonant-tunneling Diodes. Journal of Infrared, Millimeter, and Terahertz Waves, 2017, 38, 660-678.	2.2	6
22	Resonances in Left-Handed Waves Developed in Nonlinear Electrical Lattices. , 2017, , .		0
23	Numerical characterization of nonlinear oscillatory waves in a composite right―and leftâ€handed travelingâ€wave fieldâ€effect transistor. International Journal of Circuit Theory and Applications, 2017, 45, 774-789.	2.0	2
24	Mutiphase oscillator using dissipatively coupled transmission lines with regularly spaced tunnel diodes. International Journal of Circuit Theory and Applications, 2017, 45, 1115-1128.	2.0	5
25	Experimental characterization of mutually synchronized voltage edges in point-coupled tunnel diode transmission lines. IEICE Electronics Express, 2017, 14, 20170054-20170054.	0.8	1
26	Numerical Characterization of Dyakonov-Shur Instability in Gated Two-Dimensional Electron Systems. , 2017, , .		0
27	Numerical Characterization of Dyakonov-Shur Instability in Gated Two-Dimensional Electron Systems. International Journal of High Speed Electronics and Systems, 2016, 25, 1640024.	0.7	2
28	Harmonic resonance in a composite rightâ€handed and leftâ€handed transmission line periodically loaded with Schottky varactors. International Journal of Circuit Theory and Applications, 2016, 44, 492-503.	2.0	2
29	Characterization of leapfrogging solitary waves in coupled nonlinear transmission lines. Nonlinear Dynamics, 2015, 81, 1805-1814.	5.2	5
30	Asymmetrical solitary waves in coupled nonlinear transmission lines. Wave Motion, 2015, 58, 13-21.	2.0	6
31	Characterization of collision-induced generation of pulses in coupled electrical nonlinear transmission lines. Japanese Journal of Applied Physics, 2014, 53, 067301.	1.5	3
32	Head-on collision of solitary waves in coupled Korteweg–de Vries systems modeling nonlinear transmission lines. Wave Motion, 2014, 51, 935-946.	2.0	3
33	Efficiency of three-wave mixing in nonlinear composite right- and left-handed transmission lines. IEICE Electronics Express, 2014, 11, 20140547-20140547.	0.8	3
34	Soliton decay in composite right- and left-handed transmission lines periodically loaded with Schottky varactors. IEICE Electronics Express, 2014, 11, 20140881-20140881.	0.8	2
35	Characterization of edge oscillation in a traveling-wave field-effect transistor. Physical Review E, 2013, 88, 012907.	2.1	2
36	External synchronization of oscillating pulse edge on a transmission line with regularly spaced tunnel diodes. Physical Review E, 2013, 87, 012902.	2.1	8

#	Article	IF	CITATIONS
37	Reverse Doppler effect in left-handed travelling-wave field-effect transistors. IEICE Electronics Express, 2013, 10, 20120963-20120963.	0.8	Ο
38	Development of shock waves in traveling-wave field-effect transistors. Journal of Applied Physics, 2012, 112, 084914.	2.5	3
39	Composite Right- and Left-Handed Traveling-Wave Field-Effect Transistors. Active and Passive Electronic Components, 2012, 2012, 1-7.	0.3	1
40	Full-Wave Analysis of Traveling-Wave Field-Effect Transistors Using Finite-Difference Time-Domain Method. International Journal of Antennas and Propagation, 2012, 2012, 1-9.	1.2	2
41	EXPERIMENTAL OBSERVATION OF LINEAR AND NONLINEAR PULSES IN TRAVELING-WAVE FIELD-EFFECT TRANSISTORS PERIODICALLY LOADED WITH SCHOTTKY VARACTORS. Progress in Electromagnetics Research B, 2012, 37, 387-401.	1.0	1
42	EXPERIMENTAL OBSERVATION OF COLLISIONS OF NONLINEAR ENVELOPE PULSES IN LEFT-HANDED TRANSMISSION LINES PERIODICALLY LOADED WITH SCHOTTKY VARACTORS. Progress in Electromagnetics Research C, 2012, 26, 59-70.	0.9	2
43	Collision of nonlinear pulses in traveling-wave field effect transistors loaded with Schottky varactors. Journal of Applied Physics, 2012, 111, 044910.	2.5	3
44	CHARACTERIZATION OF TWO-DIMENSIONAL LEFT-HANDED TRAVELING-WAVE FIELD-EFFECT TRANSISTORS. Progress in Electromagnetics Research Letters, 2012, 30, 1-12.	0.7	0
45	COMPENSATION OF WAVE ATTENUATION IN LEFT-HANDED TRAVELING-WAVE FIELD-EFFECT TRANSISTORS. Progress in Electromagnetics Research Letters, 2012, 28, 195-205.	0.7	4
46	EXPERIMENTAL OBSERVATION OF PULSE-SHORTENING PHENOMENA IN TRAVELING-WAVE FIELD EFFECT TRANSISTORS. Progress in Electromagnetics Research Letters, 2011, 21, 79-88.	0.7	3
47	PROPERTIES OF ENVELOPE PULSES DEVELOPED IN COUPLED NONLINEAR COMPOSITE RIGHT- AND LEFT-HANDED TRANSMISSION LINES. Progress in Electromagnetics Research M, 2011, 20, 155-169.	0.9	0
48	NONLINEAR TRAVELING-WAVE FIELD-EFFECT TRANSISTORS FOR MANAGING DISPERSION-FREE ENVELOPE PULSES. Progress in Electromagnetics Research Letters, 2011, 23, 29-38.	0.7	1
49	COLLISION OF NONLINEAR ENVELOPE PULSES DEVELOPED IN COMPOSITE RIGHT- AND LEFT-HANDED TRANSMISSION LINES PERIODICALLY LOADED WITH SCHOTTKY VARACTORS. Progress in Electromagnetics Research C, 2011, 21, 1-12.	0.9	5
50	Characterization of Short-Pulse Generation Using Traveling-Wave Field-Effect Transistors. Japanese Journal of Applied Physics, 2011, 50, 014104.	1.5	4
51	Experimental characterization of nonlinear transmission lines for amplification of short pulses. , 2011, , .		0
52	Characterization of Short-Pulse Generation Using Traveling-Wave Field-Effect Transistors. Japanese Journal of Applied Physics, 2011, 50, 014104.	1.5	1
53	Generation of short electrical pulses using nonlinear traveling-wave field effect transistors. IEICE Electronics Express, 2010, 7, 1474-1479.	0.8	2
54	Dynamics of oscillating pulse edges in two-dimensional switch lines. IEICE Electronics Express, 2010, 7, 314-319.	0.8	1

#	Article	IF	CITATIONS
55	Experimental characterization of left-handed transmission lines with regularly spaced Schottky varactors. IEICE Electronics Express, 2010, 7, 608-614.	0.8	14
56	Nonlinear traveling-wave field effect transistors for amplification of short electrical pulses. IEICE Electronics Express, 2010, 7, 1188-1194.	0.8	18
57	COUPLED NONLINEAR TRANSMISSION LINES FOR DOUBLING REPETITION RATE OF INCIDENT PULSE STREAMS. Progress in Electromagnetics Research Letters, 2010, 16, 69-78.	0.7	11
58	INTERACTION OF NONLINEAR PULSES DEVELOPED IN COUPLED TRANSMISSION LINES REGULARLY SPACED SCHOTTKY VARACTORS. Progress in Electromagnetics Research Letters, 2010, 17, 85-93.	0.7	6
59	Characterization of Oscillating Pulse Edges in Switch Lines for Development of Widely Tunable Voltage-Controlled Oscillators. Japanese Journal of Applied Physics, 2009, 48, 084502.	1.5	3
60	Experimental Observation of Oscillating Wave Propagation on Switch Lines for Generation of Continuous Electromagnetic Waves. Research Letters in Electronics, 2009, 2009, 1-4.	0.6	0
61	Characterization of Nonlinear Transmission Lines for Short Pulse Amplification. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 31, 411.	2.2	3
62	Amplification of short pulses in transmission lines periodically loaded with Schottky varactors. IEICE Electronics Express, 2009, 6, 1199-1204.	0.8	3
63	Short envelope pulse propagation in composite right- and left-handed transmission lines with regularly spaced Schottky varactors. IEICE Electronics Express, 2009, 6, 1576-1581.	0.8	14
64	Characterization of one- and two-dimensional switch lines for controlling traveling pulses. IEICE Electronics Express, 2009, 6, 769-773.	0.8	1
65	Characterization of Left-Handed Traveling-Wave Transistors. IEICE Transactions on Electronics, 2009, E92-C, 1396-1400.	0.6	2
66	Nonlinear Plasma Waves in Coupled Two-Dimensional Electron Systems. Japanese Journal of Applied Physics, 2008, 47, 8756-8760.	1.5	3
67	Full-Wave Analysis of Quasi-Steady Propagation along Transmission Lines Periodically Loaded with Resonant Tunneling Diodes. Japanese Journal of Applied Physics, 2008, 47, 1126-1129.	1.5	9
68	Characterization of plasma waves in gated two-dimensional electron systems. Journal of Applied Physics, 2008, 103, 023301.	2.5	4
69	Experimental characterization of short-pulse generation using switch lines. IEICE Electronics Express, 2008, 5, 973-977.	0.8	12
70	CHARACTERIZATION OF VOLTAGE-CONTROLLED OSCILLATOR USING RTD TRANSMISSION LINE. International Journal of High Speed Electronics and Systems, 2007, 17, 577-584.	0.7	3
71	Electromagnetic continuous-wave generation using switch lines. Journal of Applied Physics, 2006, 100, 064908.	2.5	11
72	Traveling-Wave Retimer with Coupled Nonlinear Transmission Line. Japanese Journal of Applied Physics, 2003, 42, 1192-1199.	1.5	1

#	Article	IF	CITATIONS
73	Compression of Electrical Pulses Using Traveling-Wave Field Effect Transistors. Japanese Journal of Applied Physics, 1999, 38, 4688-4695.	1.5	2
74	A Traveling-wave Time-division Demultiplexer. Japanese Journal of Applied Physics, 1999, 38, 4021-4026.	1.5	2
75	Characterization of Wave Propagation on Traveling-Wave Field Effect Transistors. Japanese Journal of Applied Physics, 1998, 37, 6328-6339.	1.5	11
76	Traversable wormhole in the expanding universe. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 336, 319-323.	4.1	4
77	Interaction of rotary pulses in a closed lattice of tunnel diode oscillators. Nonlinear Dynamics, 0, , 1.	5.2	Ο
78	A frequency divider using interacting selfâ€sustained pulses in a tunnelâ€diodeâ€oscillator lattice. International Journal of Circuit Theory and Applications, 0, , .	2.0	0