
Wei Chao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3595135/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Brain innate immune response via miRNA-TLR7 sensing in polymicrobial sepsis. Brain, Behavior, and Immunity, 2022, 100, 10-24.	4.1	18
2	TLR7 Mediates Acute Respiratory Distress Syndrome in Sepsis by Sensing Extracellular miR-146a. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, 375-388.	2.9	12
3	Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment. Advanced Therapeutics, 2021, 4, 2000259.	3.2	14
4	Targeting Toll-Like Receptors in Sepsis: From Bench to Clinical Trials. Antioxidants and Redox Signaling, 2021, 35, 1324-1339.	5.4	23
5	A Nonlethal Murine Flame Burn Model Leads to a Transient Reduction in Host Defenses and Enhanced Susceptibility to Lethal Pseudomonas aeruginosa Infection. Infection and Immunity, 2021, 89, e0009121.	2.2	4
6	Hypobaria Exposure Worsens Cardiac Function and Endothelial Injury in AN Animal Model of Polytrauma: Implications for Aeromedical Evacuation. Shock, 2021, 56, 601-610.	2.1	6
7	A non-lethal full-thickness flame burn produces a seroma beneath the forming eschar thereby promoting Pseudomonas aeruginosa sepsis in mice. Journal of Burn Care and Research, 2021, , .	0.4	2
8	Role of extracellular microRNA-146a-5p in host innate immunity and bacterial sepsis. IScience, 2021, 24, 103441.	4.1	16
9	Enhanced Loading of Functional miRNA Cargo via pH Gradient Modification of Extracellular Vesicles. Molecular Therapy, 2020, 28, 975-985.	8.2	102
10	miR-19b targets pulmonary endothelial syndecan-1 following hemorrhagic shock. Scientific Reports, 2020, 10, 15811.	3.3	23
11	Extracellular miR-146a-5p Induces Cardiac Innate Immune Response and Cardiomyocyte Dysfunction. ImmunoHorizons, 2020, 4, 561-572.	1.8	25
12	Tollâ€like receptorsÂ2 and 7 mediate coagulation activation and coagulopathy in murine sepsis. Journal of Thrombosis and Haemostasis, 2019, 17, 1683-1693.	3.8	21
13	Toll-like Receptor 7 Contributes to Inflammation, Organ Injury, and Mortality in Murine Sepsis. Anesthesiology, 2019, 131, 105-118.	2.5	22
14	Importance of the Complement Alternative Pathway in Serum Chemotactic Activity During Sepsis. Shock, 2018, 50, 435-441.	2.1	10
15	Lipopeptide PAM3CYS4 Synergizes N-Formyl-Met-Leu-Phe (fMLP)-Induced Calcium Transients in Mouse Neutrophils. Shock, 2018, 50, 493-499.	2.1	2
16	Circulating Plasma Extracellular Vesicles from Septic Mice Induce Inflammation via MicroRNA- and TLR7-Dependent Mechanisms. Journal of Immunology, 2018, 201, 3392-3400.	0.8	88
17	Extracellular MicroRNAs Induce Potent Innate Immune Responses via TLR7/MyD88-Dependent Mechanisms. Journal of Immunology, 2017, 199, 2106-2117.	0.8	67
18	Theranostic Nucleic Acid Binding Nanoprobe Exerts Anti-inflammatory and Cytoprotective Effects in Ischemic Injury. Theranostics, 2017, 7, 814-825.	10.0	21

Wei Chao

#	Article	IF	CITATIONS
19	The role of myeloid differentiation factor 88 on mitochondrial dysfunction of peritoneal leukocytes during polymicrobial sepsis. Central-European Journal of Immunology, 2016, 2, 153-158.	1.2	0
20	Functional and anatomical characterization of brown adipose tissue in heart failure with blood oxygen level dependent magnetic resonance. NMR in Biomedicine, 2016, 29, 978-984.	2.8	12
21	Reduced Expression of SARM in Mouse Spleen during Polymicrobial Sepsis. Inflammation, 2016, 39, 1930-1938.	3.8	6
22	Splenic RNA and MicroRNA Mimics Promote Complement Factor B Production and Alternative Pathway Activation via Innate Immune Signaling. Journal of Immunology, 2016, 196, 2788-2798.	0.8	33
23	Functional brown adipose tissue limits cardiomyocyte injury and adverse remodeling in catecholamine-induced cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2015, 84, 202-211.	1.9	56
24	Cardiac RNA Induces Inflammatory Responses in Cardiomyocytes and Immune Cells via Toll-like Receptor 7 Signaling. Journal of Biological Chemistry, 2015, 290, 26688-26698.	3.4	50
25	Extracellular RNA Induces Complement Factor B in Macrophages via MyD88. FASEB Journal, 2015, 29, 507.9.	0.5	Ο
26	Role of Extracellular RNA and TLR3â€Trif Signaling in Myocardial Ischemia–Reperfusion Injury. Journal of the American Heart Association, 2014, 3, e000683.	3.7	128
27	¹⁸ F-FDG Kinetics Parameters Depend on the Mechanism of Injury in Early Experimental Acute Respiratory Distress Syndrome. Journal of Nuclear Medicine, 2014, 55, 1871-1877.	5.0	33
28	Inflammation and Heart Diseases: Role of Toll-Like Receptor Signaling. Journal of Anesthesia and Perioperative Medicine, 2014, 1, 104-117.	0.2	0
29	Complement Factor B Is the Downstream Effector of TLRs and Plays an Important Role in a Mouse Model of Severe Sepsis. Journal of Immunology, 2013, 191, 5625-5635.	0.8	73
30	Septic cardiomyopathy is improved by enhancing cardiomyocyte denitrosylation capacity. FASEB Journal, 2013, 27, 921.8.	0.5	0
31	Interplay between complement factor B and Tollâ€like receptors and its role in septic cardiomyopathy. FASEB Journal, 2013, 27, 652.6.	0.5	0
32	Myocardial Ischemia Activates an Injurious Innate Immune Signaling via Cardiac Heat Shock Protein 60 and Toll-like Receptor 4. Journal of Biological Chemistry, 2011, 286, 31308-31319.	3.4	123
33	Bone marrow MyD88 signaling modulates neutrophil function and ischemic myocardial injury. American Journal of Physiology - Cell Physiology, 2010, 299, C760-C769.	4.6	45
34	Toll-like receptor signaling: a critical modulator of cell survival and ischemic injury in the heart. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 296, H1-H12.	3.2	254
35	Innate immune adaptor MyD88 mediates neutrophil recruitment and myocardial injury after ischemia-reperfusion in mice. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1311-H1318.	3.2	118
36	Lipopolysaccharide Improves Cardiomyocyte Survival and Function after Serum Deprivation. Journal of Biological Chemistry, 2005, 280, 21997-22005.	3.4	65

Wei Chao

#	Article	IF	CITATIONS
37	Fas-associated death-domain protein inhibits TNF-α mediated NF-κB activation in cardiomyocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 289, H2073-H2080.	3.2	10
38	Strategic advantages of insulin-like growth factor-I expression for cardioprotection. Journal of Gene Medicine, 2003, 5, 277-286.	2.8	61
39	Importance of FADD Signaling in Serum Deprivation- and Hypoxia-induced Cardiomyocyte Apoptosis. Journal of Biological Chemistry, 2002, 277, 31639-31645.	3.4	56