Menno M Schoonheim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3594919/publications.pdf

Version: 2024-02-01

107 papers

5,689 citations

94433 37 h-index 70 g-index

118 all docs

118 docs citations

118 times ranked

7046 citing authors

#	Article	IF	Citations
1	Disability in multiple sclerosis is related to thalamic connectivity and cortical network atrophy. Multiple Sclerosis Journal, 2022, 28, 61-70.	3.0	20
2	Functional network dynamics and decreased conscientiousness in multiple sclerosis. Journal of Neurology, 2022, 269, 2696-2706.	3.6	9
3	Comparing diagnostic criteria for the diagnosis of neurocognitive disorders in multiple sclerosis. Multiple Sclerosis and Related Disorders, 2022, 58, 103479.	2.0	9
4	Structure-function coupling as a correlate and potential biomarker of cognitive impairment in multiple sclerosis. Network Neuroscience, 2022, 6, 339-356.	2.6	9
5	Structural (dys)connectivity associates with cholinergic cell density in Alzheimer's disease. Brain, 2022, 145, 2869-2881.	7.6	15
6	Glutamate levels across deep brain structures in patients with a psychotic disorder and its relation to cognitive functioning. Journal of Psychopharmacology, 2022, 36, 489-497.	4.0	2
7	A more unstable resting-state functional network in cognitively declining multiple sclerosis. Brain Communications, 2022, 4, .	3.3	8
8	A randomized trial predicting response to cognitive rehabilitation in multiple sclerosis: Is there a window of opportunity?. Multiple Sclerosis Journal, 2022, 28, 2124-2136.	3.0	8
9	Increased functional sensorimotor network efficiency relates to disability in multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 1364-1373.	3.0	15
10	Functional brain network organization measured with magnetoencephalography predicts cognitive decline in multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 1727-1737.	3.0	12
11	The sequence of structural, functional and cognitive changes in multiple sclerosis. NeuroImage: Clinical, 2021, 29, 102550.	2.7	21
12	Mind the gap: from neurons to networks to outcomes in multiple sclerosis. Nature Reviews Neurology, 2021, 17, 173-184.	10.1	46
13	Dorsal attention network centrality increases during recovery from acute stress exposure. Neurolmage: Clinical, 2021, 31, 102721.	2.7	6
14	Development and evaluation of a manual segmentation protocol for deep grey matter in multiple sclerosis: Towards accelerated semi-automated references. NeuroImage: Clinical, 2021, 30, 102659.	2.7	3
15	The cerebellum and its network: Disrupted static and dynamic functional connectivity patterns and cognitive impairment in multiple sclerosis. Multiple Sclerosis Journal, 2021, 27, 2031-2039.	3.0	19
16	Functional correlates of motor control impairments in multiple sclerosis: A 7 Tesla task <scp>functional MRI</scp> study. Human Brain Mapping, 2021, 42, 2569-2582.	3.6	7
17	Coupling structure and function in early MS: How a less diverse repertoire of brain function could lead to clinical progression. Multiple Sclerosis Journal, 2021, 27, 491-493.	3.0	5
18	Axonal loss in major sensorimotor tracts is associated with impaired motor performance in minimally disabled multiple sclerosis patients. Brain Communications, 2021, 3, fcab032.	3.3	11

#	Article	IF	CITATIONS
19	Understanding Global Brain Network Alterations in Glioma Patients. Brain Connectivity, 2021, 11, 865-874.	1.7	20
20	Longitudinal Network Changes and Conversion to Cognitive Impairment in Multiple Sclerosis. Neurology, 2021, 97, e794-e802.	1.1	19
21	Ongoing Axonal Injury in Chronic Active Lesions in Multiple Sclerosis. Neurology, 2021, 97, 257-258.	1.1	0
22	Structural network topology and microstructural alterations of the anterior insula associate with cognitive and affective impairment in Parkinsonâ \in TM s disease. Scientific Reports, 2021, 11, 16021.	3.3	10
23	A Systematic Review of Resting-State Functional MRI Connectivity Changes and Cognitive Impairment in Multiple Sclerosis. Brain Connectivity, 2021, , .	1.7	9
24	Dynamic functional connectivity as a neural correlate of fatigue in multiple sclerosis. NeuroImage: Clinical, 2021, 29, 102556.	2.7	21
25	Impaired saccadic eye movements in multiple sclerosis are related to altered functional connectivity of the oculomotor brain network. NeuroImage: Clinical, 2021, 32, 102848.	2.7	4
26	B-Cell Depletion and COVID-19 Severity in Multiple Sclerosis. Neurology, 2021, 97, 885-886.	1.1	0
27	A pilot study of the effects of running training on visuospatial memory in MS: A stronger functional embedding of the hippocampus in the default-mode network?. Multiple Sclerosis Journal, 2020, 26, 1594-1598.	3.0	17
28	Long-range connections are more severely damaged and relevant for cognition in multiple sclerosis. Brain, 2020, 143, 150-160.	7.6	52
29	Introducing Multiple Screener: An unsupervised digital screening tool for cognitive deficits in MS. Multiple Sclerosis and Related Disorders, 2020, 38, 101479.	2.0	9
30	Anterior insular network disconnection and cognitive impairment in Parkinson's disease. NeuroImage: Clinical, 2020, 28, 102364.	2.7	20
31	Functional connectivity between resting-state networks reflects decline in executive function in Parkinson's disease: A longitudinal fMRI study. NeuroImage: Clinical, 2020, 28, 102468.	2.7	15
32	Histopathology-validated recommendations for cortical lesion imaging in multiple sclerosis. Brain, 2020, 143, 2988-2997.	7.6	24
33	Identifying Progression in Multiple Sclerosis: New Perspectives. Annals of Neurology, 2020, 88, 438-452.	5.3	67
34	Mapping functional brain networks from the structural connectome: Relating the series expansion and eigenmode approaches. Neurolmage, 2020, 216, 116805.	4.2	40
35	Evaluation of the Central Vein Sign as a Diagnostic Imaging Biomarker in Multiple Sclerosis. JAMA Neurology, 2019, 76, 1446.	9.0	119
36	Plasma proteome in multiple sclerosis disease progression. Annals of Clinical and Translational Neurology, 2019, 6, 1582-1594.	3.7	21

#	Article	IF	Citations
37	Functional Network Dynamics on Functional MRI: A Primer on an Emerging Frontier in Neuroscience. Radiology, 2019, 292, 460-463.	7.3	4
38	Reduced Network Dynamics on Functional MRI Signals Cognitive Impairment in Multiple Sclerosis. Radiology, 2019, 292, 449-457.	7.3	51
39	The road ahead in clinical network neuroscience. Network Neuroscience, 2019, 3, 969-993.	2.6	37
40	Cortical atrophy accelerates as cognitive decline worsens in multiple sclerosis. Neurology, 2019, 93, e1348-e1359.	1.1	53
41	P14.53 Deconstructing pathologically increased MEG network clustering in glioma patients. Neuro-Oncology, 2019, 21, iii79-iii79.	1.2	1
42	What Causes Deep Gray Matter Atrophy in Multiple Sclerosis?. American Journal of Neuroradiology, 2019, 40, 107-108.	2.4	9
43	Resting-state MEG measurement of functional activation as a biomarker for cognitive decline in MS. Multiple Sclerosis Journal, 2019, 25, 1896-1906.	3.0	19
44	Structural network topology relates to tissue properties in multiple sclerosis. Journal of Neurology, 2019, 266, 212-222.	3.6	9
45	Predicting clinical progression in multiple sclerosis after 6 and 12Âyears. European Journal of Neurology, 2019, 26, 893-902.	3.3	40
46	Acid sphingomyelinase: No potential as a biomarker for multiple sclerosis. Multiple Sclerosis and Related Disorders, 2019, 28, 44-49.	2.0	7
47	Gray matter networks and cognitive impairment in multiple sclerosis. Multiple Sclerosis Journal, 2019, 25, 382-391.	3.0	39
48	Explaining the heterogeneity of functional connectivity findings in multiple sclerosis: An empirically informed modeling study. Human Brain Mapping, 2018, 39, 2541-2548.	3.6	40
49	The value of including thalamic atrophy as a clinical trial endpoint in multiple sclerosis. Neurology, 2018, 90, 677-678.	1.1	16
50	Metabolites predict lesion formation and severity in relapsing-remitting multiple sclerosis. Multiple Sclerosis Journal, 2018, 24, 491-500.	3.0	24
51	Cognitive impairment in patients with multiple sclerosis is associated with atrophy of the inner retinal layers. Multiple Sclerosis Journal, 2018, 24, 158-166.	3.0	49
52	No Plasmatic Proteomic Signature at Clinical Disease Onset Associated With 11 Year Clinical, Cognitive and MRI Outcomes in Relapsing-Remitting Multiple Sclerosis Patients. Frontiers in Molecular Neuroscience, 2018, 11, 371.	2.9	3
53	Is impaired information processing speed a matter of structural or functional damage in MS?. Neurolmage: Clinical, 2018, 20, 844-850.	2.7	30
54	Determinants of Cognitive Impairment in Patients with Multiple Sclerosis with and without Atrophy. Radiology, 2018, 288, 544-551.	7.3	40

#	Article	IF	CITATIONS
55	Predicting cognitive decline in multiple sclerosis: a 5-year follow-up study. Brain, 2018, 141, 2605-2618.	7.6	113
56	Structural and Functional Neuroimaging in Multiple Sclerosis: From Atrophy, Lesions to Global Network Disruption. , 2018, , 171-213.		1
57	Staging of cortical and deep grey matter functional connectivity changes in multiple sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2018, 89, 205-210.	1.9	26
58	Increased default-mode network centrality in cognitively impaired multiple sclerosis patients. Neurology, 2017, 88, 952-960.	1.1	91
59	Functional reorganization is a maladaptive response to injury – Commentary. Multiple Sclerosis Journal, 2017, 23, 194-196.	3.0	21
60	Altered eigenvector centrality is related to local restingâ€state network functional connectivity in patients with longstanding type 1 diabetes mellitus. Human Brain Mapping, 2017, 38, 3623-3636.	3.6	33
61	In-vivo imaging of meningeal inflammation in multiple sclerosis: Presence of evidence or evidence of presence?. Multiple Sclerosis Journal, 2017, 23, 1169-1171.	3.0	5
62	Increased connectivity of hub networks and cognitive impairment in multiple sclerosis. Neurology, 2017, 88, 2107-2114.	1.1	62
63	Loss of Functional Connectivity in Patients with Parkinson Disease and Visual Hallucinations. Radiology, 2017, 285, 896-903.	7.3	44
64	Damaged fiber tracts of the nucleus basalis of Meynert in Parkinson's disease patients with visual hallucinations. Scientific Reports, 2017, 7, 10112.	3.3	36
65	Agreement of MSmetrix with established methods for measuring cross-sectional and longitudinal brain atrophy. Neurolmage: Clinical, 2017, 15, 843-853.	2.7	32
66	Subgenual Cingulate Cortex Functional Connectivity in Relation to Depressive Symptoms and Cognitive Functioning in Type 1 Diabetes Mellitus Patients. Psychosomatic Medicine, 2016, 78, 740-749.	2.0	16
67	Disrupted topological organization of structural and functional brain connectomes in clinically isolated syndrome and multiple sclerosis. Scientific Reports, 2016, 6, 29383.	3.3	65
68	White Matter Diffusion Changes during the First Year of Natalizumab Treatment in Relapsing-Remitting Multiple Sclerosis. American Journal of Neuroradiology, 2016, 37, 1030-1037.	2.4	10
69	Multi-parametric structural magnetic resonance imaging in relation to cognitive dysfunction in long-standing multiple sclerosis. Multiple Sclerosis Journal, 2016, 22, 608-619.	3.0	44
70	Grey Matter Atrophy in Multiple Sclerosis: Clinical Interpretation Depends on Choice of Analysis Method. PLoS ONE, 2016, 11, e0143942.	2.5	45
71	Network Collapse and Cognitive Impairment in Multiple Sclerosis. Frontiers in Neurology, 2015, 6, 82.	2.4	168
72	Functional brain networks: Linking thalamic atrophy to clinical disability in multiple sclerosis, a multimodal fMRI and MEG Study. Human Brain Mapping, 2015, 36, 603-618.	3.6	96

#	Article	IF	CITATIONS
7 3	Thalamus structure and function determine severity of cognitive impairment in multiple sclerosis. Neurology, 2015, 84, 776-783.	1.1	180
74	Enhanced Axonal Metabolism during Early Natalizumab Treatment in Relapsing-Remitting Multiple Sclerosis. American Journal of Neuroradiology, 2015, 36, 1116-1123.	2.4	16
7 5	Memory impairment in multiple sclerosis: Relevance of hippocampal activation and hippocampal connectivity. Multiple Sclerosis Journal, 2015, 21, 1705-1712.	3.0	62
76	Structural MRI substrates of cognitive impairment in neuromyelitis optica. Neurology, 2015, 85, 1491-1499.	1.1	63
77	Functional connectivity and cognitive decline over 3 years in Parkinson disease. Neurology, 2014, 83, 2046-2053.	1.1	135
78	Longitudinal absolute metabolite quantification of white and gray matter regions in healthy controls using proton MR spectroscopic imaging. NMR in Biomedicine, 2014, 27, 304-311.	2.8	23
79	Changes in functional network centrality underlie cognitive dysfunction and physical disability in multiple sclerosis. Multiple Sclerosis Journal, 2014, 20, 1058-1065.	3.0	69
80	Differential impact of subclinical carotid artery disease on cerebral structure and functioning in type 1 diabetes patients with versus those without proliferative retinopathy. Cardiovascular Diabetology, 2014, 13, 58.	6.8	6
81	Functional brain network analysis using minimum spanning trees in Multiple Sclerosis: An MEG source-space study. NeuroImage, 2014, 88, 308-318.	4.2	126
82	Ventral Striatum, but Not Cortical Volume Loss, Is Related to Cognitive Dysfunction in Type 1 Diabetic Patients With and Without Microangiopathy. Diabetes Care, 2014, 37, 2483-2490.	8.6	31
83	Sexâ€specific extent and severity of white matter damage in multiple sclerosis: Implications for cognitive decline. Human Brain Mapping, 2014, 35, 2348-2358.	3.6	66
84	Structural degree predicts functional network connectivity: A multimodal resting-state fMRI and MEG study. Neurolmage, 2014, 97, 296-307.	4.2	125
85	Functional connectivity changes in multiple sclerosis patients: A graph analytical study of MEG resting state data. Human Brain Mapping, 2013, 34, 52-61.	3.6	106
86	Cognition in MS correlates with resting-state oscillatory brain activity: An explorative MEG source-space study. NeuroImage: Clinical, 2013, 2, 727-734.	2.7	33
87	Functional segmentation of the hippocampus in the healthy human brain and in Alzheimer's disease. Neurolmage, 2013, 66, 28-35.	4.2	85
88	Clinical significance of atrophy and white matter mean diffusivity within the thalamus of multiple sclerosis patients. Multiple Sclerosis Journal, 2013, 19, 1478-1484.	3.0	85
89	Cognitive and Clinical Dysfunction, Altered MEG Resting-State Networks and Thalamic Atrophy in Multiple Sclerosis. PLoS ONE, 2013, 8, e69318.	2.5	68
90	Functional plasticity in MS. Neurology, 2012, 79, 1418-1419.	1.1	18

#	Article	IF	Citations
91	Gender-related differences in functional connectivity in multiple sclerosis. Multiple Sclerosis Journal, 2012, 18, 164-173.	3.0	89
92	Resting-State Brain Networks in Type 1 Diabetic Patients With and Without Microangiopathy and Their Relation to Cognitive Functions and Disease Variables. Diabetes, 2012, 61, 1814-1821.	0.6	109
93	Subcortical atrophy and cognition. Neurology, 2012, 79, 1754-1761.	1.1	181
94	Resting-state fMRI changes in Alzheimer's disease and mild cognitive impairment. Neurobiology of Aging, 2012, 33, 2018-2028.	3.1	337
95	Cognitive Dysfunction in Early Multiple Sclerosis: Altered Centrality Derived from Resting-State Functional Connectivity Using Magneto-Encephalography. PLoS ONE, 2012, 7, e42087.	2.5	56
96	Functional adaptive changes within the hippocampal memory system of patients with multiple sclerosis. Human Brain Mapping, 2012, 33, 2268-2280.	3.6	68
97	Diffusion tensor imaging in type 1 diabetes: decreased white matter integrity relates to cognitive functions. Diabetologia, 2012, 55, 1218-1220.	6.3	58
98	MEG Network Differences between Low- and High-Grade Glioma Related to Epilepsy and Cognition. PLoS ONE, 2012, 7, e50122.	2.5	100
99	Cognition is related to resting-state small-world network topology: an magnetoencephalographic study. Neuroscience, 2011, 175, 169-177.	2.3	150
100	The limits of functional reorganization in multiple sclerosis. Neurology, 2010, 74, 1246-1247.	1.1	104
101	Resting state networks change in clinically isolated syndrome. Brain, 2010, 133, 1612-1621.	7.6	215
102	Loss of â€~Small-World' Networks in Alzheimer's Disease: Graph Analysis of fMRI Resting-State Functional Connectivity. PLoS ONE, 2010, 5, e13788.	2.5	523
103	Learning by observation requires an early sleep window. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 18926-18930.	7.1	48
104	Sleep benefits subsequent hippocampal functioning. Nature Neuroscience, 2009, 12, 122-123.	14.8	267
105	Collapsing networks: new avenues for functional connectivity analyses in multiple sclerosis. Swiss Archives of Neurology, Psychiatry and Psychotherapy, 0, , .	0.1	0
106	State Changes During Resting-State (Magneto)encephalographic Studies: The Effect of Drowsiness on Spectral, Connectivity, and Network Analyses. Frontiers in Neuroscience, 0, 16, .	2.8	5
107	Altered functional brain states predict cognitive decline 5 years after a clinically isolated syndrome. Multiple Sclerosis Journal, 0, , 135245852211014.	3.0	1