Ulrich Maurer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3594665/publications.pdf

Version: 2024-02-01

27 papers 2,559 citations

430874 18 h-index 27 g-index

27 all docs

27 docs citations

27 times ranked

4522 citing authors

#	Article	IF	CITATIONS
1	CD4 ⁺ T cells require Ikaros to inhibit their differentiation toward a pathogenic cell fate. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	9
2	Keeping Cell Death in Check: Ubiquitylation-Dependent Control of TNFR1 and TLR Signaling. Frontiers in Cell and Developmental Biology, 2019, 7, 117.	3.7	11
3	CDK9â€mediated phosphorylation controls the interaction of TIP60 with the transcriptional machinery. EMBO Reports, 2018, 19, 244-256.	4.5	16
4	Requirement of GSK-3 for PUMA induction upon loss of pro-survival PI3K signaling. Cell Death and Disease, 2018, 9, 470.	6.3	8
5	TNFα sensitizes hepatocytes to FasL-induced apoptosis by NFκB-mediated Fas upregulation. Cell Death and Disease, 2018, 9, 909.	6.3	39
6	Identification of a novel anoikis signalling pathway using the fungal virulence factor gliotoxin. Nature Communications, 2018, 9, 3524.	12.8	40
7	SPATA2: more than a missing link. Cell Death and Differentiation, 2017, 24, 1142-1147.	11.2	31
8	SPATA2: New insights into the assembly of the TNFR signaling complex. Cell Cycle, 2017, 16, 11-12.	2.6	5
9	Lower frequency routine surveillance endomyocardial biopsies after heart transplantation. PLoS ONE, 2017, 12, e0182880.	2.5	14
10	<scp>SPATA</scp> 2 promotes <scp>CYLD</scp> activity and regulates <scp>TNF</scp> â€induced <scp>NF</scp> â€iPB signaling and cell death. EMBO Reports, 2016, 17, 1485-1497.	4.5	101
11	Phylogenetically Distant Viruses Use the Same BH3-Only Protein Puma to Trigger Bax/Bak-Dependent Apoptosis of Infected Mouse and Human Cells. PLoS ONE, 2015, 10, e0126645.	2.5	15
12	How do viruses control mitochondria-mediated apoptosis?. Virus Research, 2015, 209, 45-55.	2.2	52
13	GSK-3 – at the crossroads of cell death and survival. Journal of Cell Science, 2014, 127, 1369-1378.	2.0	157
14	A Novel Mitochondrial MAVS/Caspase-8 Platform Links RNA Virus–Induced Innate Antiviral Signaling to Bax/Bak-Independent Apoptosis. Journal of Immunology, 2014, 192, 1171-1183.	0.8	70
15	Cytosolic Bax. Journal of Biological Chemistry, 2012, 287, 9112-9127.	3.4	29
16	Phosphorylation of Tip60 by GSK-3 Determines the Induction of PUMA and Apoptosis by p53. Molecular Cell, 2011, 42, 584-596.	9.7	104
17	GSK-3 turns p53 deadly. Cell Cycle, 2011, 10, 3621-3622.	2.6	2
18	Switch from type II to I Fas/CD95 death signaling on in vitro culturing of primary hepatocytes. Hepatology, 2008, 48, 1942-1953.	7.3	53

#	Article	IF	CITATION
19	GAPDH and Autophagy Preserve Survival after Apoptotic Cytochrome c Release in the Absence of Caspase Activation. Cell, 2007, 129, 983-997.	28.9	464
20	Glycogen Synthase Kinase-3 Regulates Mitochondrial Outer Membrane Permeabilization and Apoptosis by Destabilization of MCL-1. Molecular Cell, 2006, 21, 749-760.	9.7	759
21	Vav1 Promotes T Cell Cycle Progression by Linking TCR/CD28 Costimulation to FOXO1 and p27kip1 Expression. Journal of Immunology, 2006, 177, 5024-5031.	0.8	51
22	GSK3-Mediated BCL-3 Phosphorylation Modulates Its Degradation and Its Oncogenicity. Molecular Cell, 2004, 16, 35-45.	9.7	119
23	Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell, 2003, 4, 371-381.	16.8	289
24	Hammerhead ribozyme–mediated cleavage of the fusion transcript NPM-ALK associated with anaplastic large-cell lymphoma. Experimental Hematology, 2003, 31, 226-233.	0.4	23
25	Identification of Novel Polymorphisms in Intron 7 of the Human p53 Gene in Acute Myeloid Leukemia and Healthy Donors. Leukemia and Lymphoma, 2001, 41, 655-658.	1.3	5
26	The Wilms' Tumor Gene Product (WT1) Modulates the Response to 1,25-Dihydroxyvitamin D3 by Induction of the Vitamin D Receptor. Journal of Biological Chemistry, 2001, 276, 3727-3732.	3.4	41
27	Wilms Tumor Gene Expression in Acute Myeloid Leukemias. Leukemia and Lymphoma, 1997, 25, 435-443.	1.3	52