
Mengwei Zang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3593706/publications.pdf Version: 2024-02-01

MENCWEL ZANC

#	Article	IF	CITATIONS
1	Distinct histopathological phenotypes of severe alcoholic hepatitis suggest different mechanisms driving liver injury and failure. Journal of Clinical Investigation, 2022, 132, .	8.2	23
2	LRG1 is an adipokine that mediates obesity-induced hepatosteatosis and insulin resistance. Journal of Clinical Investigation, 2021, 131, .	8.2	30
3	Adipose group 1 innate lymphoid cells promote adipose tissue fibrosis and diabetes in obesity. Nature Communications, 2019, 10, 3254.	12.8	63
4	Hepatic posttranscriptional network comprised of CCR4–NOT deadenylase and FGF21 maintains systemic metabolic homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7973-7981.	7.1	21
5	DEP domain–containing mTOR–interacting protein suppresses lipogenesis and ameliorates hepatic steatosis and acuteâ€onâ€chronic liver injury in alcoholic liver disease. Hepatology, 2018, 68, 496-514.	7.3	85
6	Thioredoxin-interacting protein promotes high-glucose-induced macrovascular endothelial dysfunction. Biochemical and Biophysical Research Communications, 2017, 493, 291-297.	2.1	28
7	Organ-specific alterations in circadian genes by vertical sleeve gastrectomy in an obese diabetic mouse model. Science Bulletin, 2017, 62, 467-469.	9.0	5
8	Aging aggravates alcoholic liver injury and fibrosis in mice by downregulating sirtuin 1 expression. Journal of Hepatology, 2017, 66, 601-609.	3.7	123
9	Fibroblast growth factor 21 improves hepatic insulin sensitivity by inhibiting mammalian target of rapamycin complex 1 in mice. Hepatology, 2016, 64, 425-438.	7.3	134
10	AMPK Activation by Metformin Suppresses Abnormal Extracellular Matrix Remodeling in Adipose Tissue and Ameliorates Insulin Resistance in Obesity. Diabetes, 2016, 65, 2295-2310.	0.6	132
11	The redox mechanism for vascular barrier dysfunction associated with metabolic disorders: Glutathionylation of Rac1 in endothelial cells. Redox Biology, 2016, 9, 306-319.	9.0	51
12	The Molecular Basis of Hepatic De Novo Lipogenesis in Insulin Resistance. , 2016, , 33-58.		0
13	New Insight Into Metformin Action: Regulation of ChREBP and FOXO1 Activities in Endothelial Cells. Molecular Endocrinology, 2015, 29, 1184-1194.	3.7	37
14	Hepatic SIRT1 Attenuates Hepatic Steatosis and Controls Energy Balance in Mice by Inducing Fibroblast Growth Factor 21. Gastroenterology, 2014, 146, 539-549.e7.	1.3	240
15	Retinoic Acid Receptor Î ² Stimulates Hepatic Induction of Fibroblast Growth Factor 21 to Promote Fatty Acid Oxidation and Control Whole-body Energy Homeostasis in Mice. Journal of Biological Chemistry, 2013, 288, 10490-10504.	3.4	84
16	Activation of Sterol Regulatory Element Binding Protein and NLRP3 Inflammasome in Atherosclerotic Lesion Development in Diabetic Pigs. PLoS ONE, 2013, 8, e67532.	2.5	59
17	The Dysregulation of AMPK Suppresses Phosphorylation of Sterol Regulatory Element Binding Protein and Increases Its Activity in the Development of Atherosclerosis in Pig and Human Diabetes FASEB Journal, 2013, 27, 1010.5.	0.5	0
18	Hepatic overexpression of SIRT1 in mice attenuates endoplasmic reticulum stress and insulin resistance in the liver. FASEB Journal, 2011, 25, 1664-1679.	0.5	261

Mengwei Zang

#	Article	IF	CITATIONS
19	AMPK Phosphorylates and Inhibits SREBP Activity to Attenuate Hepatic Steatosis and Atherosclerosis in Diet-Induced Insulin-Resistant Mice. Cell Metabolism, 2011, 13, 376-388.	16.2	1,356
20	High-fat Diet Increases and the Polyphenol, S17834, Decreases Acetylation of the Sirtuin-1–dependent Lysine-382 on p53 and Apoptotic Signaling in Atherosclerotic Lesion–prone Aortic Endothelium of Normal Mice. Journal of Cardiovascular Pharmacology, 2011, 58, 263-271.	1.9	26
21	AMPK exerts dual regulatory effects on the PI3K pathway. Journal of Molecular Signaling, 2010, 5, 1.	0.5	114
22	Overnutrition and maternal obesity in sheep pregnancy alter the JNKâ€IRSâ€I signaling cascades and cardiac function in the fetal heart. FASEB Journal, 2010, 24, 2066-2076.	0.5	92
23	SIRT1 Deacetylates and Inhibits SREBP-1C Activity in Regulation of Hepatic Lipid Metabolism*. Journal of Biological Chemistry, 2010, 285, 33959-33970.	3.4	442
24	AMPK as a metabolic tumor suppressor: control of metabolism and cell growth. Future Oncology, 2010, 6, 457-470.	2.4	338
25	SIRT1 Regulates Hepatocyte Lipid Metabolism through Activating AMP-activated Protein Kinase. Journal of Biological Chemistry, 2008, 283, 20015-20026.	3.4	699
26	Characterization of Ser338 Phosphorylation for Raf-1 Activation. Journal of Biological Chemistry, 2008, 283, 31429-31437.	3.4	58
27	Polyphenols Stimulate AMP-Activated Protein Kinase, Lower Lipids, and Inhibit Accelerated Atherosclerosis in Diabetic LDL Receptor–Deficient Mice. Diabetes, 2006, 55, 2180-2191.	0.6	605
28	The Thromboxane A2Receptor Antagonist S18886 Prevents Enhanced Atherogenesis Caused by Diabetes Mellitus. Circulation, 2005, 112, 3001-3008.	1.6	87
29	AMP-activated Protein Kinase Is Required for the Lipid-lowering Effect of Metformin in Insulin-resistant Human HepG2 Cells. Journal of Biological Chemistry, 2004, 279, 47898-47905.	3.4	401
30	Spatial Approximation between Two Residues in the Mid-region of Secretin and the Amino Terminus of Its Receptor. Journal of Biological Chemistry, 2003, 278, 48300-48312.	3.4	38
31	Spatial Approximation between a Photolabile Residue in Position 13 of Secretin and the Amino Terminus of the Secretin Receptor. Molecular Pharmacology, 2003, 63, 993-1001.	2.3	37
32	Erbin Suppresses the MAP Kinase Pathway. Journal of Biological Chemistry, 2003, 278, 1108-1114.	3.4	102
33	Phosphorylation of 338SSYY341 Regulates Specific Interaction between Raf-1 and MEK1. Journal of Biological Chemistry, 2002, 277, 44996-45003.	3.4	33
34	Interaction among Four Residues Distributed through the Secretin Pharmacophore and a Focused Region of the Secretin Receptor Amino Terminus. Molecular Endocrinology, 2002, 16, 2490-2501.	3.7	36
35	Interaction between Active Pak1 and Raf-1 Is Necessary for Phosphorylation and Activation of Raf-1. Journal of Biological Chemistry, 2002, 277, 4395-4405.	3.4	105
36	Microtubule Integrity Regulates Pak Leading to Ras-independent Activation of Raf-1. Journal of Biological Chemistry, 2001, 276, 25157-25165.	3.4	41

#	Article	IF	CITATIONS
37	Identification of Two Pairs of Spatially Approximated Residues within the Carboxyl Terminus of Secretin and Its Receptor. Journal of Biological Chemistry, 2000, 275, 26032-26039.	3.4	46