
Leonard C Harrison

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3593036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gut microbial metabolites limit the frequency of autoimmune T cells and protect against type 1 diabetes. Nature Immunology, 2017, 18, 552-562.	14.5	551
2	Pro-Inflammatory CD11c+CD206+ Adipose Tissue Macrophages Are Associated With Insulin Resistance in Human Obesity. Diabetes, 2010, 59, 1648-1656.	0.6	521
3	Aerosol Insulin Induces Regulatory CD8 Î ³ δT Cells That Prevent Murine Insulin-dependent Diabetes. Journal of Experimental Medicine, 1996, 184, 2167-2174.	8.5	313
4	Latent autoimmune diabetes in adults (LADA) should be less latent. Diabetologia, 2005, 48, 2206-2212.	6.3	294
5	Linkage disequilibrium of a type 1 diabetes susceptibility locus with a regulatory IL12B allele. Nature Genetics, 2001, 27, 218-221.	21.4	289
6	Antigen-induced regulatory T cells in autoimmunity. Nature Reviews Immunology, 2003, 3, 223-232.	22.7	284
7	DIURNAL RHYTHMS OF PRO-INFLAMMATORY CYTOKINES: REGULATION BY PLASMA CORTISOL AND THERAPEUTIC IMPLICATIONS. Cytokine, 1998, 10, 307-312.	3.2	267
8	Human Dendritic Cell Subsets from Spleen and Blood Are Similar in Phenotype and Function but Modified by Donor Health Status. Journal of Immunology, 2011, 186, 6207-6217.	0.8	208
9	Insulin resistance is a risk factor for progression to Type 1 diabetes. Diabetologia, 2004, 47, 1661-1667.	6.3	203
10	The insulin A-chain epitope recognized by human T cells is posttranslationally modified. Journal of Experimental Medicine, 2005, 202, 1191-1197.	8.5	201
11	Responses against islet antigens in NOD mice are prevented by tolerance to proinsulin but not IGRP. Journal of Clinical Investigation, 2006, 116, 3258-3265.	8.2	197
12	T-Cell Epitopes in Type 1 Diabetes Autoantigen Tyrosine Phosphatase IA-2: Potential for Mimicry with Rotavirus and Other Environmental Agents. Molecular Medicine, 1998, 4, 231-239.	4.4	194
13	The Rising Incidence of Type 1 Diabetes Is Accounted for by Cases With Lower-Risk Human Leukocyte Antigen Genotypes. Diabetes Care, 2008, 31, 1546-1549.	8.6	191
14	The Chronobiology of Human Cytokine Production. International Reviews of Immunology, 1998, 16, 635-649.	3.3	186
15	Pancreatic Â-Cell Function and Immune Responses to Insulin After Administration of Intranasal Insulin to Humans At Risk for Type 1 Diabetes. Diabetes Care, 2004, 27, 2348-2355.	8.6	178
16	Neural network-based prediction of candidate T-cell epitopes. Nature Biotechnology, 1998, 16, 966-969.	17.5	173
17	A sensitive method for detecting proliferation of rare autoantigen-specific human T cells. Journal of Immunological Methods, 2003, 283, 173-183.	1.4	159
18	Conditional Expression Demonstrates the Role of the Homeodomain Transcription Factor Pdx1 in Maintenance and Regeneration of Â-Cells in the Adult Pancreas. Diabetes, 2005, 54, 2586-2595.	0.6	150

#	Article	IF	CITATIONS
19	Plasmid-Encoded Proinsulin Preserves C-Peptide While Specifically Reducing Proinsulin-Specific CD8 ⁺ T Cells in Type 1 Diabetes. Science Translational Medicine, 2013, 5, 191ra82.	12.4	149
20	T cell regulation mediated by interaction of soluble CD52 with the inhibitory receptor Siglec-10. Nature Immunology, 2013, 14, 741-748.	14.5	145
21	Cow's milk and type 1 diabetes: the real debate is about mucosal immune function Diabetes, 1999, 48, 1501-1507.	0.6	138
22	SPAK, a STE20/SPS1-related kinase that activates the p38 pathway. Oncogene, 2000, 19, 4290-4297.	5.9	137
23	Advanced Glycation End Products Are Direct Modulators of β-Cell Function. Diabetes, 2011, 60, 2523-2532.	0.6	135
24	A Randomized Controlled Trial of High-Dose Vitamin D2 Followed by Intranasal Insulin in Alzheimer's Disease. Journal of Alzheimer's Disease, 2011, 26, 477-484.	2.6	133
25	IL-18 Production from the NLRP1 Inflammasome Prevents Obesity and Metabolic Syndrome. Cell Metabolism, 2016, 23, 155-164.	16.2	133
26	C-Peptide Measurement: Methods and Clinical Utility. CRC Critical Reviews in Clinical Laboratory Sciences, 1984, 19, 297-352.	1.0	120
27	The Potential Roles of Endogenous Retroviruses in Autoimmunity. Immunological Reviews, 1996, 152, 193-236.	6.0	119
28	Genome-wide DNA methylation analysis identifies hypomethylated genes regulated by FOXP3 in human regulatory T cells. Blood, 2013, 122, 2823-2836.	1.4	114
29	T-cell antigen receptor transmembrane peptides modulate T-cell function and T cell-mediated disease. Nature Medicine, 1997, 3, 84-88.	30.7	113
30	The polycomb repressive complex 2 governs life and death of peripheral T cells. Blood, 2014, 124, 737-749.	1.4	111
31	Innate and Adaptive Immune Responses to Nonvascular Xenografts: Evidence That Macrophages Are Direct Effectors of Xenograft Rejection. Journal of Immunology, 2001, 166, 2133-2140.	0.8	110
32	Understanding autoimmune diabetes: insights from mouse models. Trends in Molecular Medicine, 2002, 8, 31-38.	6.7	109
33	Islet cell antigens in insulin-dependent diabetes: Pandora's box revisited. Trends in Immunology, 1992, 13, 348-352.	7.5	106
34	Evidence That Nasal Insulin Induces Immune Tolerance to Insulin in Adults With Autoimmune Diabetes. Diabetes, 2011, 60, 1237-1245.	0.6	106
35	Antigen-specific therapy for autoimmune disease. Current Opinion in Immunology, 2000, 12, 704-711.	5.5	104
36	Evidence That a Peptide Spanning the B-C Junction of Proinsulin Is an Early Autoantigen Epitope in the Pathogenesis of Type 1 Diabetes. Journal of Immunology, 2001, 167, 4926-4935.	0.8	100

#	Article	IF	CITATIONS
37	Evidence for Molecular Mimicry between Human T Cell Epitopes in Rotavirus and Pancreatic Islet Autoantigens. Journal of Immunology, 2010, 184, 2204-2210.	0.8	100
38	Transfer of hematopoietic stem cells encoding autoantigen prevents autoimmune diabetes. Journal of Clinical Investigation, 2003, 111, 1357-1363.	8.2	98
39	Association of Rotavirus Vaccination With the Incidence of Type 1 Diabetes in Children. JAMA Pediatrics, 2019, 173, 280.	6.2	97
40	Similar Peptides from Two β Cell Autoantigens, Proinsulin and Glutamic Acid Decarboxylase, Stimulate T Cells of Individuals at Risk for Insulin-Dependent Diabetes. Molecular Medicine, 1995, 1, 625-633.	4.4	96
41	A Peptide-binding Motif for I-Ag7, the Class II Major Histocompatibility Complex (MHC) Molecule of NOD and Biozzi AB/H Mice. Journal of Experimental Medicine, 1997, 185, 1013-1022.	8.5	92
42	Definition of High-Risk Type 1 Diabetes HLA-DR and HLA-DQ Types Using Only Three Single Nucleotide Polymorphisms. Diabetes, 2013, 62, 2135-2140.	0.6	89
43	Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide. Journal of Clinical Investigation, 2003, 111, 1365-1371.	8.2	89
44	Weight Gain in Early Life Predicts Risk of Islet Autoimmunity in Children With a First-Degree Relative With Type 1 Diabetes. Diabetes Care, 2009, 32, 94-99.	8.6	88
45	Gut microbiome dysbiosis and increased intestinal permeability in children with islet autoimmunity and type 1 diabetes: A prospective cohort study. Pediatric Diabetes, 2019, 20, 574-583.	2.9	86
46	HLA antigens and age at diagnosis of insulin-dependent diabetes mellitus. Human Immunology, 1995, 42, 116-122.	2.4	85
47	Distinct Distribution of Laminin and Its Integrin Receptors in the Pancreas. Journal of Histochemistry and Cytochemistry, 2002, 50, 1625-1632.	2.5	81
48	Cord blood monocyte–derived inflammatory cytokines suppress IL-2 and induce nonclassic "T _H 2-type―immunity associated with development of food allergy. Science Translational Medicine, 2016, 8, 321ra8.	12.4	80
49	Guidelines for Intervention Trials in Subjects With Newly Diagnosed Type 1 Diabetes. Diabetes, 2003, 52, 1059-1065.	0.6	76
50	Regulation of MHC Protein Expression in Pancreatic β-Cells by Interferon-γ and Tumor Necrosis Factor-α. Molecular Endocrinology, 1988, 2, 101-107.	3.7	73
51	Immune Modulation by Vitamin D and Its Relevance to Food Allergy. Nutrients, 2015, 7, 6088-6108.	4.1	73
52	TCRÎ ³ δ Intraepithelial Lymphocytes Are Required for Self-Tolerance. Journal of Immunology, 2006, 176, 6553-6559.	0.8	72
53	Gut microbiota composition during infancy and subsequent behavioural outcomes. EBioMedicine, 2020, 52, 102640.	6.1	72
54	Increased Generation of Dendritic Cells from Myeloid Progenitors in Autoimmune-Prone Nonobese Diabetic Mice. Journal of Immunology, 2002, 168, 5032-5041.	0.8	70

#	Article	IF	CITATIONS
55	Analysis of Families at Risk for Insulin-Dependent Diabetes Mellitus Reveals that HLA Antigens Influence Progression to Clinical Disease. Molecular Medicine, 1995, 1, 576-582.	4.4	69
56	EVIDENCE THAT MACROPHAGES ARE REQUIRED FOR T-CELL INFILTRATION AND REJECTION OF FETAL PIG PANCREAS XENOGRAFTS IN NONOBESE DIABETIC MICE1. Transplantation, 1998, 66, 1407-1416.	1.0	66
57	Production of IGF-binding proteins by vascular endothelial cells. Biochemical and Biophysical Research Communications, 1987, 148, 734-739.	2.1	63
58	Progenitor cells in the adult pancreas. Diabetes/Metabolism Research and Reviews, 2004, 20, 13-27.	4.0	63
59	Cytokine-based human whole blood assay for the detection of antigen-reactive T cells. Journal of Immunological Methods, 1995, 186, 37-46.	1.4	60
60	The Beta Cell in Autoimmune Diabetes: Many Mechanisms and Pathways of Loss. Trends in Endocrinology and Metabolism, 2000, 11, 11-15.	7.1	60
61	Proinsulin—a pathogenic autoantigen in type 1 diabetes. Autoimmunity Reviews, 2003, 2, 204-210.	5.8	60
62	MINIREVIEW: Cytokines: An Expanding Network of Immuno-Inflammatory Hormones. Molecular Endocrinology, 1988, 2, 1151-1156.	3.7	59
63	MHCPEP: a database of MHC-binding peptides. Nucleic Acids Research, 1994, 22, 3663-3665.	14.5	59
64	Environmental determinants of islet autoimmunity (ENDIA): a pregnancy to early life cohort study in children at-risk of type 1 diabetes. BMC Pediatrics, 2013, 13, 124.	1.7	59
65	Interferon-Î ³ Induces the Expression of HLA-A,B,C but Not HLA-DR on Human Pancreatic Î ² -Cells*. Journal of Clinical Endocrinology and Metabolism, 1986, 62, 1101-1109.	3.6	58
66	Reduction in insulitis following administration of IFN-Î ³ and TNF-Î \pm in the NOD mouse. Journal of Autoimmunity, 1991, 4, 249-262.	6.5	56
67	Type 1 diabetes: Lessons for other autoimmune diseases?. Journal of Autoimmunity, 2008, 31, 306-310.	6.5	55
68	CD52 glycan binds the proinflammatory B box of HMGB1 to engage the Siglec-10 receptor and suppress human T cell function. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 7783-7788.	7.1	55
69	An efficient method for cloning human autoantigen-specific T cells. Journal of Immunological Methods, 2005, 298, 83-92.	1.4	53
70	Fms-like tyrosine kinase 3 ligand administration overcomes a genetically determined dendritic cell deficiency in NOD mice and protects against diabetes development. International Immunology, 2005, 17, 307-314.	4.0	53
71	Retroviral Superantigens and Type 1 Diabetes Mellitus. Cell, 1998, 95, 9-11.	28.9	52
72	Autoimmunity to Both Proinsulin and IGRP Is Required for Diabetes in Nonobese Diabetic 8.3 TCR Transgenic Mice. Journal of Immunology, 2008, 180, 4458-4464.	0.8	51

#	Article	IF	CITATIONS
73	Growth of Rotaviruses in Primary Pancreatic Cells. Journal of Virology, 2002, 76, 9537-9544.	3.4	49
74	Autoimmune Diabetes Is Suppressed by Transfer of Proinsulin-Encoding Gr-1+ Myeloid Progenitor Cells That Differentiate In Vivo Into Resting Dendritic Cells. Diabetes, 2005, 54, 434-442.	0.6	48
75	HLA-DRB1*15:01-DQA1*01:02-DQB1*06:02 Haplotype Protects Autoantibody-Positive Relatives From Type 1 Diabetes Throughout the Stages of Disease Progression. Diabetes, 2016, 65, 1109-1119.	0.6	48
76	Proinsulin C-peptide is an autoantigen in people with type 1 diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 10732-10737.	7.1	47
77	Disabling an integral CTL epitope allows suppression of autoimmune diabetes by intranasal proinsulin peptide. Journal of Clinical Investigation, 2003, 111, 1365-1371.	8.2	47
78	Intranasal Vaccination with Proinsulin DNA Induces Regulatory CD4+ T Cells That Prevent Experimental Autoimmune Diabetes. Journal of Immunology, 2006, 176, 4608-4615.	0.8	46
79	Vaccination against self to prevent autoimmune disease: the type 1 diabetes model. Immunology and Cell Biology, 2008, 86, 139-145.	2.3	46
80	Autoreactive T cells in chronic spontaneous urticaria target the IgE Fc receptor lα subunit. Journal of Allergy and Clinical Immunology, 2016, 138, 761-768.e4.	2.9	46
81	Influence of fecal collection conditions and 16S rRNA gene sequencing at two centers on human gut microbiota analysis. Scientific Reports, 2018, 8, 4386.	3.3	46
82	Metabolite-based dietary supplementation in human type 1 diabetes is associated with microbiota and immune modulation. Microbiome, 2022, 10, 9.	11.1	46
83	The Melbourne Preâ€Diabetes Study: prediction of type 1 diabetes mellitus using antibody and metabolic testing. Medical Journal of Australia, 1998, 169, 81-84.	1.7	45
84	Risk assessment, prediction and prevention of type 1 diabetes. Pediatric Diabetes, 2001, 2, 71-82.	2.9	45
85	Identification of Pancreatic β Cell-Related Genes by Representational Difference Analysis ¹ . Endocrinology, 1997, 138, 1419-1426.	2.8	44
86	Reappraising the stereotypes of diabetes in the modern diabetogenic environment. Nature Reviews Endocrinology, 2009, 5, 483-489.	9.6	44
87	Characterization of pancreatic T lymphocytes associated with beta cell destruction in the non-obese diabetic (NOD) mouse. Journal of Autoimmunity, 1991, 4, 263-276.	6.5	43
88	Innate immunity and graft rejection. Immunological Reviews, 2000, 173, 141-147.	6.0	43
89	Antibodies to Glutamic Acid Decarboxylase in At-risk and Clinical Insulin-dependent Diabetic Subjects: Relationship to Age, Sex and Islet Cell Antibody Status, and Temporal Profile. Journal of Autoimmunity, 1994, 7, 55-66.	6.5	42
90	MicroRNAs in CD4 + T cell subsets are markers of disease risk and T cell dysfunction in individuals at risk for type 1 diabetes. Journal of Autoimmunity, 2016, 68, 52-61.	6.5	42

#	Article	IF	CITATIONS
91	CD52 inhibits Toll-like receptor activation of NF-κB and triggers apoptosis to suppress inflammation. Cell Death and Differentiation, 2018, 25, 392-405.	11.2	42
92	Trials in type 1 diabetes: Antigen-specific therapies. Clinical Immunology, 2013, 149, 345-355.	3.2	40
93	Bone morphogenetic proteins promote development of fetal pancreas epithelial colonies containing insulin-positive cells. Journal of Cell Science, 2002, 115, 753-60.	2.0	40
94	TCR-mediated activation promotes GITR upregulation in T cells and resistance to glucocorticoid-induced death. International Immunology, 2004, 16, 1315-1321.	4.0	38
95	Cognate CD4+ Help Elicited by Resting Dendritic Cells Does Not Impair the Induction of Peripheral Tolerance in CD8+ T Cells. Journal of Immunology, 2007, 178, 2094-2103.	0.8	38
96	Rotavirus Infection Induces Transient Pancreatic Involution and Hyperglycemia in Weanling Mice. PLoS ONE, 2014, 9, e106560.	2.5	38
97	Cloning and partial nucleotide sequence of human glutamic acid decarboxylase cDNA from brain and pancreatic islets. Biochemical and Biophysical Research Communications, 1991, 176, 1239-1244.	2.1	37
98	Antigen-Based Vaccination and Prevention of Type 1 Diabetes. Current Diabetes Reports, 2013, 13, 616-623.	4.2	36
99	Maternal prenatal gut microbiota composition predicts child behaviour. EBioMedicine, 2021, 68, 103400.	6.1	36
100	Transient blockade of CD40 ligand dissociates pathogenic from protective mucosal immunity. Journal of Clinical Investigation, 2002, 109, 261-267.	8.2	36
101	Stabilization of glucose transporter mRNA by insulin/IGF-1 and glucose deprivation. Biochemical and Biophysical Research Communications, 1990, 171, 210-215.	2.1	35
102	Forward light scatter is a simple measure of Tâ€cell activation and proliferation but is not universally suited for doublet discrimination. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2011, 79A, 646-652.	1.5	35
103	β-Cell Apoptosis in an Accelerated Model of Autoimmune Diabetes. Molecular Medicine, 1998, 4, 495-501.	4.4	34
104	IgG subclass antibodies to glutamic acid decarboxylase and risk for progression to clinical insulin-dependent diabetes. Human Immunology, 1998, 59, 493-499.	2.4	33
105	Interleukin-1β Produced in Response to Islet Autoantigen Presentation Differentiates T-Helper 17 Cells at the Expense of Regulatory T-Cells. Diabetes, 2011, 60, 248-257.	0.6	33
106	Persistence of recipient lymphocytes in NOD mice after irradiation and bone marrow transplantation. Journal of Autoimmunity, 2004, 22, 131-138.	6.5	32
107	Activated Protein C Inhibits Pancreatic Islet Inflammation, Stimulates T Regulatory Cells, and Prevents Diabetes in Non-obese Diabetic (NOD) Mice. Journal of Biological Chemistry, 2012, 287, 16356-16364.	3.4	32
108	A randomised controlled trial of high dose vitamin D in recent-onset type 2 diabetes. Diabetes Research and Clinical Practice, 2014, 106, 576-582.	2.8	32

#	Article	IF	CITATIONS
109	Distinct Gut Virome Profile of Pregnant Women With Type 1 Diabetes in the ENDIA Study. Open Forum Infectious Diseases, 2019, 6, ofz025.	0.9	32
110	Antibody-mediated inhibition of FXIIa blocks downstream bradykinin generation. Journal of Allergy and Clinical Immunology, 2018, 142, 1355-1358.	2.9	31
111	Cytotoxic T Cells to an Epitope in the Islet Autoantigen IA-2 Are Not Disease-Specific. Clinical Immunology, 2001, 99, 360-364.	3.2	30
112	Revisiting regulatory T cells in type 1 diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2012, 19, 271-278.	2.3	30
113	A Clinical Screening Tool Identifies Autoimmune Diabetes in Adults. Diabetes Care, 2006, 29, 970-975.	8.6	30
114	High T Cell Responses to the Glutamic Acid Decarboxylase (GAD) Isoform 67 Reflect a Hyperimmune State that Precedes the Onset of Insulin-Dependent Diabetes. Journal of Autoimmunity, 1997, 10, 165-173.	6.5	29
115	Rebranding asymptomatic type 1 diabetes: the case for autoimmune beta cell disorder as a pathological and diagnostic entity. Diabetologia, 2017, 60, 35-38.	6.3	28
116	HLA Class II-associated polymorphism of interferon-Î ³ production implications for HLA-disease association. Human Immunology, 1997, 53, 12-16.	2.4	27
117	Vascularized tissueâ€engineered chambers promote survival and function of transplanted islets and improve glycemic control. FASEB Journal, 2006, 20, 565-567.	0.5	27
118	Generation and expansion of regulatory human CD4+ T-cell clones specific for pancreatic islet autoantigens. Journal of Autoimmunity, 2011, 36, 47-55.	6.5	27
119	Chromatography of serum on Sep-pak C18 corrects falsely elevated vitamin D metabolite levels measured by protein binding assay. Clinica Chimica Acta, 1988, 176, 169-178.	1.1	26
120	Chronic Stimulation of Glucose Transporter Gene Expression in L6 Myocytes Mediated via the Insulin-like Growth Factor-1 Receptor. Molecular Endocrinology, 1989, 3, 2128-2135.	3.7	26
121	The Dexamethasone Suppression Test in Anorexia Nervosa the Influence of Weight, Depression, Adrenocorticotrophic Hormone and Dexamethasone. British Journal of Psychiatry, 1990, 157, 713-717.	2.8	26
122	Dendritic Cells Generated from Human Blood in Granulocyte Macrophage-Colony Stimulating Factor and Interleukin-7. Human Immunology, 1997, 55, 103-116.	2.4	26
123	The motif for peptide binding to the insulin-dependent diabetes mellitus-associated class II MHC molecule I-Ag7 validated by phage display library. International Immunology, 2000, 12, 493-503.	4.0	26
124	Multi-level remodelling of chromatin underlying activation of human T cells. Scientific Reports, 2021, 11, 528.	3.3	26
125	Laminin-1 and epidermal growth factor family members co-stimulate fetal pancreas cell proliferation and colony formation. Differentiation, 2005, 73, 45-49.	1.9	25
126	Preclinical screening for acute toxicity of therapeutic monoclonal antibodies in a hu-SCID model. Clinical and Translational Immunology, 2014, 3, e29.	3.8	25

#	Article	IF	CITATIONS
127	Localization of dipeptidyl peptidase-4 (CD26) to human pancreatic ducts and islet alpha cells. Diabetes Research and Clinical Practice, 2015, 110, 291-300.	2.8	25
128	NaÃ ⁻ ve regulatory T cells in infancy: Associations with perinatal factors and development of food allergy. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1760-1768.	5.7	24
129	Cytokines activate caspase-3 in insulinoma cells of diabetes-prone NOD mice directly and via upregulation of Fas. Journal of Autoimmunity, 2004, 23, 301-309.	6.5	23
130	Convergence of bone morphogenetic protein and laminin-1 signaling pathways promotes proliferation and colony formation by fetal mouse pancreatic cells. Experimental Cell Research, 2005, 308, 114-122.	2.6	23
131	The Effector T Cell Response to Ryegrass Pollen Is Counterregulated by Simultaneous Induction of Regulatory T Cells. Journal of Immunology, 2010, 184, 4708-4716.	0.8	23
132	Type 1 diabetes in pregnancy is associated with distinct changes in the composition and function of the gut microbiome. Microbiome, 2021, 9, 167.	11.1	23
133	Nesidioblastosis and Multifocal Pancreatic Islet Cell Hyperplasia in an Adult: Clinicopathologic Features and In Vitro Pancreatic. American Journal of Clinical Pathology, 1985, 84, 534-541.	0.7	22
134	Viruses and cytokines: Evidence for multiple roles in pancreatic beta cell destruction in type 1 insulin-dependent diabetes mellitus. Journal of Cellular Biochemistry, 1989, 40, 57-66.	2.6	22
135	Pancreatic Beta Cell Proliferation in Rabbits Demonstrated by Bromodeoxyuridine Labeling. Pancreas, 1989, 4, 594-600.	1.1	22
136	Natural History of Humoral Immunity to Glutamic Acid Decarboxylase in Non-Obese Diabetic (NOD) Mice. Journal of Autoimmunity, 1994, 7, 643-653.	6.5	22
137	Beta cell function in type 1 diabetes determined from clinical and fasting biochemical variables. Diabetologia, 2019, 62, 33-40.	6.3	22
138	Extreme disruption of heterochromatin is required for accelerated hematopoietic aging. Blood, 2020, 135, 2049-2058.	1.4	22
139	Antiâ€ <scp>CD</scp> 2 producing pig xenografts effect localized depletion of human T cells in a hu <scp>SCID</scp> model. Xenotransplantation, 2013, 20, 100-109.	2.8	20
140	The Parahox gene Pdx1 is required to maintain positional identity in the adult foregut. International Journal of Developmental Biology, 2013, 57, 391-398.	0.6	20
141	Type 1 Diabetes Prevention: A Goal Dependent on Accepting a Diagnosis of an Asymptomatic Disease. Diabetes, 2016, 65, 3233-3239.	0.6	20
142	Interferon-Î ³ : pleiotropic effects on a rat pancreatic beta cell line. Molecular and Cellular Endocrinology, 1987, 52, 161-167.	3.2	19
143	Harp (harmonin-interacting, ankyrin repeat-containing protein), a novel protein that interacts with harmonin in epithelial tissues. Genes To Cells, 2004, 9, 967-982.	1.2	19
144	CD4+T Cell Proliferation in Response to GAD and Proinsulin in Healthy, Pre-diabetic, and Diabetic Donors. Annals of the New York Academy of Sciences, 2004, 1037, 16-21.	3.8	19

#	Article	IF	CITATIONS
145	The origin of thymic CD4+CD25+ regulatory T cells and their co-stimulatory requirements are determined after elimination of recirculating peripheral CD4+ cells. International Immunology, 2007, 19, 455-463.	4.0	19
146	Genome-wide analysis reveals no evidence of trans chromosomal regulation of mammalian immune development. PLoS Genetics, 2018, 14, e1007431.	3.5	19
147	Transcription and translation of two glutamate decarboxylase genes in the ileum of rat, mouse and guinea pig. Journal of the Autonomic Nervous System, 1995, 55, 18-28.	1.9	18
148	The Prospect of Vaccination to Prevent Type 1 Diabetes. Hum Vaccin, 2005, 1, 143-150.	2.4	18
149	Does rotavirus turn on type 1 diabetes?. PLoS Pathogens, 2019, 15, e1007965.	4.7	18
150	Pancreas size and exocrine function is decreased in young children with recentâ€onset Type 1 diabetes. Diabetic Medicine, 2020, 37, 1340-1343.	2.3	18
151	Endocrine cells develop within pancreatic bud-like structures derived from mouse ES cells differentiated in response to BMP4 and retinoic acid. Stem Cell Research, 2007, 1, 25-36.	0.7	17
152	Transient blockade of CD40 ligand dissociates pathogenic from protective mucosal immunity. Journal of Clinical Investigation, 2002, 109, 261-267.	8.2	17
153	Both T _H 1 and T _H 2 Cytokine mRNAs are Expressed in the NOD Mouse Pancreas <i>in vivo</i> . Autoimmunity, 1996, 23, 99-110.	2.6	16
154	Adult Pancreas Side Population Cells Expand after Î ² Cell Injury and Are a Source of Insulin-Secreting Cells. PLoS ONE, 2012, 7, e48977.	2.5	16
155	Mucosal Tolerance to Prevent Type 1 Diabetes: Can the Outcome Be Improved in Humans?. Review of Diabetic Studies, 2004, 1, 113-113.	1.3	16
156	Detection of cytomegalovirus by the polymerase chain reaction: A simple, rapid and sensitive nonâ€radioactive method. Medical Journal of Australia, 1991, 154, 383-385.	1.7	15
157	A 64 kDa antigen/glutamic acid decarboxylase (GAD) in fetal pig pro-islets: Co-precipitation with a 38 kDa protein and recognition by T cells in humans at risk for insulin-dependent diabetes. Journal of Autoimmunity, 1992, 5, 759-770.	6.5	15
158	Glutamic acid decarboxylase in insulinâ€dependent diabetes mellitus. Diabetes/metabolism Reviews, 1992, 8, 133-147.	0.3	15
159	Characterization of ganglioside associated with the thyrotrophin receptor. Glycobiology, 1994, 4, 791-796.	2.5	15
160	Cytokine regulation of glutamate decarboxylase biosynthesis in isolated rat islets of Langerhans. Biochemical Journal, 1996, 317, 713-719.	3.7	15
161	Pancreatic Expression and Mitochondrial Localization of the Progestin-AdipoQ Receptor PAQR10. Molecular Medicine, 2008, 14, 697-704.	4.4	15
162	Siglec-10 expression is up-regulated in activated human CD4+ T cells. Human Immunology, 2020, 81, 101-104.	2.4	15

#	Article	IF	CITATIONS
163	Adult Human Pancreatic Islet Cells in Tissue Culture: Function and Immunoreactivity*. Journal of Clinical Endocrinology and Metabolism, 1985, 61, 681-685.	3.6	14
164	Homogeneous bivalent insulin receptor: Purification using insulin coupled to 1,1′-carbonyldiimidazole activated-agarose. Biochemical and Biophysical Research Communications, 1985, 132, 1059-1065.	2.1	14
165	Induction of the insulin receptor and other differentiation markers by sodium butyrate in the Burkitt lymphoma cell, Raji. Biochemical and Biophysical Research Communications, 1989, 161, 101-106.	2.1	14
166	Effects of dexfenfluramine of glucose turnover in non-insulin-dependent diabetes mellitus. Diabetes Research and Clinical Practice, 1994, 23, 127-134.	2.8	14
167	Do Glutamic Acid Decarboxylase Antibodies Improve the Prediction of IDDM in First-degree Relatives At Risk for IDDM?. Journal of Autoimmunity, 1994, 7, 873-879.	6.5	14
168	Anti-CD45RB antibody deters xenograft rejection by modulating T cell priming and homing. International Immunology, 2002, 14, 953-962.	4.0	14
169	Proinsulin is encoded by an RNA splice variant in human blood myeloid cells. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 16430-16435.	7.1	14
170	Specific Sialoforms Required for the Immune Suppressive Activity of Human Soluble CD52. Frontiers in Immunology, 2019, 10, 1967.	4.8	14
171	Development of autoantibodies to islet antigens during childhood: implications for preclinical type 1 diabetes screening. Pediatric Diabetes, 2002, 3, 144-148.	2.9	12
172	Type 1 diabetes: a disease of developmental origins. Pediatric Diabetes, 2017, 18, 417-421.	2.9	12
173	Human Thyrotropin Receptor Subunits Characterized by Thyrotropin Affinity Purification and Western Blotting*. Journal of Clinical Endocrinology and Metabolism, 1989, 69, 134-141.	3.6	11
174	Cow's milk and IDDM. Lancet, The, 1996, 348, 905-906.	13.7	11
175	The Non-Immune RIP-kbMouse is a Useful Host for Islet Transplantation, as the Diabetes is Spontaneous, Mild and Predictable. International Journal of Experimental Diabetes Research, 2002, 3, 37-45.	1.1	11
176	Cord Blood CD8+ T Cells Have a Natural Propensity to Express IL-4 in a Fatty Acid Metabolism and Caspase Activation-Dependent Manner. Frontiers in Immunology, 2018, 9, 879.	4.8	11
177	FATALITIES DUE TO THE WEEDâ€KILLER PARAQUAT. Medical Journal of Australia, 1972, 2, 774-777.	1.7	10
178	Homeostatic proliferation of intestinal intraepithelial lymphocytes precedes their migration to extra-intestinal sites. European Journal of Immunology, 2007, 37, 2226-2233.	2.9	10
179	Transcriptome of pancreas-specific Bmpr1a-deleted islets links to TPH1–5-HT axis. Biology Open, 2015, 4, 1016-1023.	1.2	10
180	Higher frequency of vertebrateâ€infecting viruses in the gut of infants born to mothers with type 1 diabetes. Pediatric Diabetes, 2020, 21, 271-279.	2.9	10

#	Article	IF	CITATIONS
181	Sialoglycan recognition is a common connection linking acidosis, zinc, and HMGB1 in sepsis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	10
182	Strategies for Identifying and Predicting Islet Autoantigen T-cell Epitopes in Insulin-dependent Diabetes Mellitus. Annals of Medicine, 1997, 29, 401-404.	3.8	9
183	Evidence from twins for acquired cellular immune hyperactivity in type 1 diabetes. Immunology, 2002, 106, 584-589.	4.4	9
184	The dark side of insulin: A primary autoantigen and instrument of self-destruction in type 1 diabetes. Molecular Metabolism, 2021, 52, 101288.	6.5	9
185	An Antibody-Based Leukocyte-Capture Microarray for the Diagnosis of Systemic Lupus Erythematosus. PLoS ONE, 2013, 8, e58199.	2.5	9
186	Changes in pancreatic exocrine function in young atâ€risk children followed to islet autoimmunity and type 1 diabetes in the <scp>ENDIA</scp> study. Pediatric Diabetes, 2020, 21, 945-949.	2.9	9
187	Emerging evidence that molecules expressed by mammalian tissue grafts are recognized by the innate immune system. Journal of Leukocyte Biology, 2002, 71, 401-9.	3.3	9
188	Immunoblotting for the detection of TSH receptor autoantibodies. Journal of Autoimmunity, 1991, 4, 529-542.	6.5	8
189	Chromosomes distribute randomly to, but not within, human neutrophil nuclear lobes. IScience, 2021, 24, 102161.	4.1	8
190	Simplifying prediction of disease progression in pre-symptomatic type 1 diabetes using a single blood sample. Diabetologia, 2021, 64, 2432-2444.	6.3	8
191	Lack of specificity of islet cell surface antibodies (ICSA) in IDDM. Diabetes Research and Clinical Practice, 1992, 17, 33-42.	2.8	7
192	Late-Onset Autoimmune Diabetes in Relatives of People with Type 1 Diabetes. Annals of the New York Academy of Sciences, 2003, 1005, 370-373.	3.8	7
193	Dominance of cytokine- over FasL-induced impairment of the mitochondrial transmembrane potential (l͡²l͡ʿm) in the pancreatic l̂²-cell line NIT-1. Diabetes and Vascular Disease Research, 2008, 5, 198-204.	2.0	7
194	Extracellular signals and pancreatic beta-cell development: a brief review. Molecular Medicine, 2002, 8, 763-70.	4.4	7
195	Evidence for the Viral Aetiology of IDDM. Autoimmunity, 1997, 25, 251-252.	2.6	6
196	Women with type 1 diabetes exhibit a progressive increase in gut Saccharomyces cerevisiae in pregnancy associated with evidence of gut inflammation. Diabetes Research and Clinical Practice, 2022, 184, 109189.	2.8	6
197	Insulin receptor expression in burkitt lymphoma cell lines. International Journal of Cancer, 1989, 44, 467-473.	5.1	5
198	Antibodies to synovial antigens in recent-onset rheumatoid arthritis. Arthritis and Rheumatism, 1995, 38, 1418-1428.	6.7	5

#	Article	IF	CITATIONS
199	Characterization of the Human Pancreas Side Population as a Potential Reservoir of Adult Stem Cells. Pancreas, 2018, 47, 25-34.	1.1	5
200	Type 1 Diabetes. , 2019, , 957-966.e1.		5
201	Associations between diet, the gut microbiome and short chain fatty acids in youth with islet autoimmunity and type 1 diabetes. Pediatric Diabetes, 2021, 22, 425-433.	2.9	5
202	The impact of molecular biology on the practice of medicine. Medical Journal of Australia, 1987, 147, 17-28.	1.7	5
203	Insulin Receptor Expression in the Burkitt Lymphoma Cells Daudi and Raji. Molecular Endocrinology, 1989, 3, 597-602.	3.7	4
204	Detection of gangliosides by direct binding ofLimax flavus agglutinin to thin layer chromotograms. Glycoconjugate Journal, 1990, 7, 75-84.	2.7	4
205	Enhanced insulin-receptor tyrosine kinase activity associated with chromosomal translocation (1;19) in a pre-B-cell leukemia line. International Journal of Cancer, 1992, 50, 500-504.	5.1	4
206	Insulin resistance in children and adolescents with type 1 diabetes mellitus: relation to obesity. Pediatric Diabetes, 2005, 6, 3-4.	2.9	4
207	Coding Error in Study of Rotavirus Vaccination and Type 1 Diabetes in Children. JAMA Pediatrics, 2019, 173, 894.	6.2	4
208	Association of Ganglioside with the TSH Receptor. Trends in Glycoscience and Glycotechnology, 1990, 2, 333-342.	0.1	4
209	(Pro)insulin-specific regulatory T cells. Novartis Foundation Symposium, 2003, 252, 132-41; discussion 141-5, 203-10.	1.1	4
210	A2B5-reactive ganglioside expression determines the differentiation stage and capacity of rat insulinoma (RIN) sublines. Cell Differentiation and Development, 1990, 32, 39-46.	0.4	3
211	Screening for preclinical type 1 diabetes in a discrete population with an apparent increased disease incidence. Pediatric Diabetes, 2000, 1, 193-198.	2.9	3
212	Insulin-specific vaccination for type 1 diabetes: a step closer?. Human Vaccines and Immunotherapeutics, 2012, 8, 834-837.	3.3	3
213	Clinical trial data validate the C-peptide estimate model in type 1 diabetes. Diabetologia, 2020, 63, 885-886.	6.3	3
214	Differential requirement for the Polycomb repressor complex 2 in dendritic cell and tissue-resident myeloid cell homeostasis. Science Immunology, 2021, 6, eabf7268.	11.9	3
215	Difference in Generating Mouse Pancreatic Epithelial Cell Colonies in Vitro. Pancreas, 2003, 27, 204-206.	1.1	2
216	(Pro)insulin-Specific Regulatory T Cells. Novartis Foundation Symposium, 2008, , 132-145.	1.1	2

#	Article	lF	CITATIONS
217	Characterization of a novel human BFL-1-specific monoclonal antibody. Cell Death and Differentiation, 2020, 27, 826-828.	11.2	2
218	Evaluation of protocol amendments to the Environmental Determinants of Islet Autoimmunity (ENDIA) study during the COVIDâ€19 pandemic. Diabetic Medicine, 2021, 38, e14638.	2.3	2
219	Prevention of Autoimmune Disease: Type 1 Diabetes as a Paradigm. , 2006, , 1045-1062.		2
220	Cytotoxicity-Related Gene Expression and Chromatin Accessibility Define a Subset of CD4+ T Cells That Mark Progression to Type 1 Diabetes. Diabetes, 2022, 71, 566-577.	0.6	2
221	Transgenic approaches to understanding the role of MHC genes in insulin dependent diabetes mellitus I. Immune and non-immune mechanisms of β cell destruction. Bailliere's Clinical Endocrinology and Metabolism, 1991, 5, 439-448.	1.0	1
222	Does Insulin Resistance Need Resistin?. Journal of Clinical Endocrinology and Metabolism, 2007, 92, 2036-2037.	3.6	1
223	Persistently autoantibody-negative type 1 diabetes: Rich pickings or much ado about nothing?. Pediatric Diabetes, 2011, 12, 139-141.	2.9	1
224	A pilot study of the feasibility of empagliflozin in recent-onset type 1 diabetes. Metabolism Open, 2020, 5, 100021.	2.9	1
225	Validation in the general population of a C-peptide estimate equation to measure beta cell function in recent-onset type 1 diabetes. Acta Diabetologica, 2021, 58, 115-117.	2.5	1
226	Expanding the taxonomic range in the fecal metagenome. BMC Bioinformatics, 2021, 22, 312.	2.6	1
227	DNA probes for presymptomatic diagnosis: keys to biological determinism?. Medical Journal of Australia, 1988, 148, 546-547.	1.7	1
228	Cytokines, Antigens and Regulation of Autoimmune Beta Cell Destruction in Non-Obese Diabetic (NOD) Mice. Proceedings of the Japanese Society of Animal Models for Human Diseases, 1995, 11, 1-1.	0.0	0
229	Insulinâ€dependent diabetes: now for some good news. Medical Journal of Australia, 1996, 165, 466-467.	1.7	0
230	High avidity antibodies to fetal pig pancreas endocrine cells transfer rejection but are not normally generated to fetal pig pancreas xenografts. Xenotransplantation, 2002, 9, 382-392.	2.8	0
231	Genetics of Diabetes in Childhood. , 2003, , 1-28.		0
232	Immunity to self co-generates regulatory T cells. Nature Precedings, 2008, , .	0.1	0
233	A novel population of regulatory CD4 t cells is deficient after stimulation by autoantigen in type 1 diabetes. Pathology, 2010, 42, S46-S47.	0.6	0
234	Rotavirus and Type 1 Diabetes. , 2013, , 177-186.		0

Rotavirus and Type 1 Diabetes. , 2013, , 177-186. 234

0

#	Article	IF	CITATIONS
235	Prevention of Autoimmune Disease. , 2014, , 1191-1208.		Ο

Prevention of Autoimmune Disease: The Type 1 Diabetes Paradigm. , 2020, , 1391-1413.