
Walter D Fairlie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3591721/publications.pdf Version: 2024-02-01

WAITED D FAIDLIE

#	Article	IF	CITATIONS
1	The role of BCL-2 family proteins and therapeutic potential of BH3-mimetics in malignant pleural mesothelioma. Expert Review of Anticancer Therapy, 2021, 21, 413-424.	2.4	9
2	Influenza A virus infectionâ€induced macroautophagy facilitates MHC class Ilâ€restricted endogenous presentation of an immunodominant viral epitope. FEBS Journal, 2021, 288, 3164-3185.	4.7	6
3	Optimization of Benzothiazole and Thiazole Hydrazones as Inhibitors of Schistosome BCL-2. ACS Infectious Diseases, 2021, 7, 1143-1163.	3.8	3
4	Co-Operativity between MYC and BCL-2 Pro-Survival Proteins in Cancer. International Journal of Molecular Sciences, 2021, 22, 2841.	4.1	17
5	A novel BH3-mimetic, AZD0466, targeting BCL-XL and BCL-2 is effective in pre-clinical models of malignant pleural mesothelioma. Cell Death Discovery, 2021, 7, 122.	4.7	23
6	BECLIN1: Protein Structure, Function and Regulation. Cells, 2021, 10, 1522.	4.1	57
7	Discovery, development and application of drugs targeting BCL-2 pro-survival proteins in cancer. Biochemical Society Transactions, 2021, 49, 2381-2395.	3.4	9
8	Targeting the BCL-2-regulated apoptotic pathway for the treatment of solid cancers. Biochemical Society Transactions, 2021, 49, 2397-2410.	3.4	11
9	Characterization of a novel human BFL-1-specific monoclonal antibody. Cell Death and Differentiation, 2020, 27, 826-828.	11.2	2
10	Diversity in the intrinsic apoptosis pathway of nematodes. Communications Biology, 2020, 3, 478.	4.4	4
11	BCL-XL is an actionable target for treatment of malignant pleural mesothelioma. Cell Death Discovery, 2020, 6, 114.	4.7	13
12	Crosstalk between apoptosis and autophagy signaling pathways. International Review of Cell and Molecular Biology, 2020, 352, 115-158.	3.2	51
13	Idronoxil as an Anticancer Agent: Activity and Mechanisms. Current Cancer Drug Targets, 2020, 20, 341-354.	1.6	7
14	A small molecule interacts with VDAC2 to block mouse BAK-driven apoptosis. Nature Chemical Biology, 2019, 15, 1057-1066.	8.0	30
15	The Structural Biology of Bcl-xL. International Journal of Molecular Sciences, 2019, 20, 2234.	4.1	44
16	BCL-XL and MCL-1 are the key BCL-2 family proteins in melanoma cell survival. Cell Death and Disease, 2019, 10, 342.	6.3	125
17	Structural insights into BCL2 pro-survival protein interactions with the key autophagy regulator BECN1 following phosphorylation by STK4/MST1. Autophagy, 2019, 15, 785-795.	9.1	38
18	Mcl-1 and Bcl-xL sequestration of Bak confers differential resistance to BH3-only proteins. Cell Death and Differentiation, 2018, 25, 721-734.	11.2	44

#	Article	IF	CITATIONS
19	ATF3 Repression of BCL-XL Determines Apoptotic Sensitivity to HDAC Inhibitors across Tumor Types. Clinical Cancer Research, 2017, 23, 5573-5584.	7.0	46
20	Conversion of Bim-BH3 from Activator to Inhibitor of Bak through Structure-Based Design. Molecular Cell, 2017, 68, 659-672.e9.	9.7	57
21	Computationally designed high specificity inhibitors delineate the roles of BCL2 family proteins in cancer. ELife, 2016, 5, .	6.0	65
22	MCL-1 inhibition provides a new way to suppress breast cancer metastasis and increase sensitivity to dasatinib. Breast Cancer Research, 2016, 18, 125.	5.0	60
23	BAX-BAK1-independent LC3B lipidation by BH3 mimetics is unrelated to BH3 mimetic activity and has only minimal effects on autophagic flux. Autophagy, 2016, 12, 1083-1093.	9.1	16
24	Physiological restraint of Bak by Bcl-x _L is essential for cell survival. Genes and Development, 2016, 30, 1240-1250.	5.9	40
25	The BECN1ÂN-terminal domain is intrinsically disordered. Autophagy, 2016, 12, 460-471.	9.1	21
26	Hepatocyte growth factor renders BRAF mutant human melanoma cell lines resistant to PLX4032 by downregulating the pro-apoptotic BH3-only proteins PUMA and BIM. Cell Death and Differentiation, 2016, 23, 2054-2062.	11.2	24
27	Characterisation of the conformational preference and dynamics of the intrinsically disordered N-terminal region of Beclin 1 by NMR spectroscopy. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1128-1137.	2.3	5
28	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	9.1	4,701
29	Repurposing apoptosis-inducing cancer drugs to treat schistosomiasis. Future Medicinal Chemistry, 2015, 7, 707-711.	2.3	10
30	Prosurvival Bcl-2 family members reveal a distinct apoptotic identity between conventional and plasmacytoid dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4044-4049.	7.1	43
31	Bid chimeras indicate that most BH3-only proteins can directly activate Bak and Bax, and show no preference for Bak versus Bax. Cell Death and Disease, 2015, 6, e1735-e1735.	6.3	76
32	A transgenic mouse model to inducibly target prosurvival Bcl2 proteins with selective BH3 peptides in vivo. Cell Death and Disease, 2015, 6, e1679-e1679.	6.3	1
33	Residue-Based Preorganization of BH3-Derived α/β-Peptides: Modulating Affinity, Selectivity and Proteolytic Susceptibility in α-Helix Mimics. ACS Chemical Biology, 2015, 10, 1667-1675.	3.4	40
34	α/β-Peptide Foldamers Targeting Intracellular Protein–Protein Interactions with Activity in Living Cells. Journal of the American Chemical Society, 2015, 137, 11365-11375.	13.7	101
35	The Functional Differences between Pro-survival and Pro-apoptotic B Cell Lymphoma 2 (Bcl-2) Proteins Depend on Structural Differences in Their Bcl-2 Homology 3 (BH3) Domains. Journal of Biological Chemistry, 2014, 289, 36001-36017.	3.4	33
36	Characterisation of a novel A1-specific monoclonal antibody. Cell Death and Disease, 2014, 5, e1553-e1553.	6.3	16

#	Article	IF	CITATIONS
37	Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in <i>p53</i> . Genes and Development, 2014, 28, 58-70.	5.9	156
38	Apoptosis in schistosomes: toward novel targets for the treatment of schistosomiasis. Trends in Parasitology, 2014, 30, 75-84.	3.3	33
39	Structureâ€Guided Rational Design of α/βâ€Peptide Foldamers with High Affinity for BCLâ€2 Family Prosurvival Proteins. ChemBioChem, 2013, 14, 1564-1572.	2.6	65
40	Bax Crystal Structures Reveal How BH3 Domains Activate Bax and Nucleate Its Oligomerization to Induce Apoptosis. Cell, 2013, 152, 519-531.	28.9	491
41	Discovery of Potent and Selective Benzothiazole Hydrazone Inhibitors of Bcl-X _L . Journal of Medicinal Chemistry, 2013, 56, 5514-5540.	6.4	60
42	Anti-apoptotic Mcl-1 is essential for the development and sustained growth of acute myeloid leukemia. Genes and Development, 2012, 26, 120-125.	5.9	344
43	Direct visualization of Bcl-2 family protein interactions using live cell fluorescent protein redistribution assays. Cell Death and Disease, 2012, 3, e288-e288.	6.3	11
44	STRUCTURAL BIOLOGY OF THE INTRINSIC CELL DEATH PATHWAY: WHAT DO WE KNOW AND WHAT IS MISSING?. Computational and Structural Biotechnology Journal, 2012, 1, e201204007.	4.1	3
45	Bcl-2, Bcl-xL, and Bcl-w are not equivalent targets of ABT-737 and navitoclax (ABT-263) in lymphoid and leukemic cells. Blood, 2012, 119, 5807-5816.	1.4	168
46	Evaluation of Diverse α/β-Backbone Patterns for Functional α-Helix Mimicry: Analogues of the Bim BH3 Domain. Journal of the American Chemical Society, 2012, 134, 315-323.	13.7	144
47	Functional genomics approaches in parasitic helminths. Parasite Immunology, 2012, 34, 163-182.	1.5	21
48	Quinazoline Sulfonamides as Dual Binders of the Proteins B-Cell Lymphoma 2 and B-Cell Lymphoma Extra Long with Potent Proapoptotic Cell-Based Activity. Journal of Medicinal Chemistry, 2011, 54, 1914-1926.	6.4	62
49	Crystal Structure of a BCL-W Domain-Swapped Dimer: Implications for the Function of BCL-2 Family Proteins. Structure, 2011, 19, 1467-1476.	3.3	25
50	Peptide inhibitors of the malaria surface protein, apical membrane antigen 1: Identification of key binding residues. Biopolymers, 2011, 95, 354-364.	2.4	12
51	Structural Basis of Bclâ€x _L Recognition by a BH3â€Mimetic α/βâ€Peptide Generated by Sequenceâ€Based Design. ChemBioChem, 2011, 12, 2025-2032.	2.6	56
52	Mutation to Bax beyond the BH3 Domain Disrupts Interactions with Pro-survival Proteins and Promotes Apoptosis. Journal of Biological Chemistry, 2011, 286, 7123-7131.	3.4	96
53	Discovery and molecular characterization of a Bcl-2–regulated cell death pathway in schistosomes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6999-7003.	7.1	53
54	Antibodies specifically targeting a locally misfolded region of tumor associated EGFR. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 5082-5087.	7.1	69

#	Article	IF	CITATIONS
55	Novel Bcl-2 Homology-3 Domain-like Sequences Identified from Screening Randomized Peptide Libraries for Inhibitors of the Pro-survival Bcl-2 Proteins. Journal of Biological Chemistry, 2009, 284, 31315-31326.	3.4	29
56	Conformational Changes in Bcl-2 Pro-survival Proteins Determine Their Capacity to Bind Ligands. Journal of Biological Chemistry, 2009, 284, 30508-30517.	3.4	79
57	Highâ€Resolution Structural Characterization of a Helical α/βâ€Peptide Foldamer Bound to the Antiâ€Apoptotic Protein Bclâ€x _L . Angewandte Chemie - International Edition, 2009, 48, 4318-4322.	13.8	143
58	The BH3 mimetic compound, ABT-737, synergizes with a range of cytotoxic chemotherapy agents in chronic lymphocytic leukemia. Leukemia, 2009, 23, 2034-2041.	7.2	91
59	Membrane-bound Fas ligand only is essential for Fas-induced apoptosis. Nature, 2009, 461, 659-663.	27.8	348
60	Structural Insights into the Protease-like Antigen Plasmodium falciparum SERA5 and Its Noncanonical Active-Site Serine. Journal of Molecular Biology, 2009, 392, 154-165.	4.2	35
61	The role of BH3-only protein Bim extends beyond inhibiting Bcl-2–like prosurvival proteins. Journal of Cell Biology, 2009, 186, 355-362.	5.2	164
62	The role of BH3-only protein Bim extends beyond inhibiting Bcl-2–like prosurvival proteins. Journal of Experimental Medicine, 2009, 206, i19-i19.	8.5	0
63	Structure of the BH3 Domains from the p53-Inducible BH3-Only Proteins Noxa and Puma in Complex with Mcl-1. Journal of Molecular Biology, 2008, 380, 958-971.	4.2	178
64	A novel BH3 ligand that selectively targets Mcl-1 reveals that apoptosis can proceed without Mcl-1 degradation. Journal of Cell Biology, 2008, 180, 341-355.	5.2	157
65	Apoptosis is triggered when prosurvival Bcl-2 proteins cannot restrain Bax. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 18081-18087.	7.1	162
66	Vaccinia virus anti-apoptotic F1L is a novel Bcl-2-like domain-swapped dimer that binds a highly selective subset of BH3-containing death ligands. Cell Death and Differentiation, 2008, 15, 1564-1571.	11.2	205
67	EGL-1 BH3 mutants reveal the importance of protein levels and target affinity for cell-killing potency. Cell Death and Differentiation, 2008, 15, 1609-1618.	11.2	10
68	Inhibition of Malaria Parasite Development by a Cyclic Peptide That Targets the Vital Parasite Protein SERA5. Infection and Immunity, 2008, 76, 4332-4344.	2.2	23
69	Blocking LIF action in the uterus by using a PEGylated antagonist prevents implantation: A nonhormonal contraceptive strategy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19357-19362.	7.1	89
70	Structural insights into the degradation of Mcl-1 induced by BH3 domains. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 6217-6222.	7.1	397
71	A Structural Viral Mimic of Prosurvival Bcl-2:ÂAÂPivotal Role for Sequestering ProapoptoticÂBax and Bak. Molecular Cell, 2007, 25, 933-942.	9.7	125
72	Apoptosis Initiated When BH3 Ligands Engage Multiple Bcl-2 Homologs, Not Bax or Bak. Science, 2007, 315, 856-859.	12.6	1,021

#	Article	IF	CITATIONS
73	(α/β+α)-Peptide Antagonists of BH3 Domain/Bcl-xL Recognition:  Toward General Strategies for Foldamer-Based Inhibition of Proteinâ^'Protein Interactions. Journal of the American Chemical Society, 2007, 129, 139-154.	13.7	160
74	Tumor-induced anorexia and weight loss are mediated by the TGF-Î ² superfamily cytokine MIC-1. Nature Medicine, 2007, 13, 1333-1340.	30.7	489
75	Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Cell Death and Differentiation, 2007, 14, 1711-1713.	11.2	235
76	CED-4 forms a $2\hat{a}\in\infty$: $\hat{a}\in\infty$ 2 heterotetrameric complex with CED-9 until specifically displaced by EGL-1 or CED-13. Cell Death and Differentiation, 2006, 13, 426-434.	11.2	23
77	Relaxin and Prostaglandin E2Regulate Interleukin 11 during Human Endometrial Stromal Cell Decidualization. Journal of Clinical Endocrinology and Metabolism, 2005, 90, 3458-3465.	3.6	77
78	The Intracellular Chloride Ion Channel Protein CLIC1 Undergoes a Redox-controlled Structural Transition. Journal of Biological Chemistry, 2004, 279, 9298-9305.	3.4	192
79	Affinity Maturation of Leukemia Inhibitory Factor and Conversion to Potent Antagonists of Signaling. Journal of Biological Chemistry, 2004, 279, 2125-2134.	3.4	30
80	A Family of Leukemia Inhibitory Factor-Binding Peptides that Can Act as Antagonists When Conjugated to Poly(ethylene glycol)â€. Biochemistry, 2003, 42, 13193-13201.	2.5	8
81	Macrophage inhibitory cytokine 1 in fetal membranes and amniotic fluid from pregnancies with and without preterm labour and premature rupture of membranes. Molecular Human Reproduction, 2003, 9, 535-540.	2.8	23
82	Negative regulation of gp130 signalling mediated through tyrosine-757 is not dependent on the recruitment of SHP2. Biochemical Journal, 2003, 372, 495-502.	3.7	16
83	Recombinant CLIC1 (NCC27) Assembles in Lipid Bilayers via a pH-dependent Two-state Process to Form Chloride Ion Channels with Identical Characteristics to Those Observed in Chinese Hamster Ovary Cells Expressing CLIC1. Journal of Biological Chemistry, 2002, 277, 26003-26011.	3.4	110
84	Concentration in plasma of macrophage inhibitory cytokine-1 and risk of cardiovascular events in women: a nested case-control study. Lancet, The, 2002, 359, 2159-2163.	13.7	235
85	A fusion protein system for the recombinant production of short disulfide-containing peptides. Protein Expression and Purification, 2002, 26, 171-178.	1.3	30
86	Antibody-Based Approach to High-Volume Genotyping for MIC-1 Polymorphism. BioTechniques, 2002, 33, 118-126.	1.8	51
87	Anoxia induces macrophage inhibitory cytokine-1 (MIC-1) in glioblastoma cells independently of p53 and HIF-1. Oncogene, 2002, 21, 4212-4219.	5.9	145
88	Epitope Mapping of the Transforming Growth Factor-β Superfamily Protein, Macrophage Inhibitory Cytokine-1 (MIC-1):  Identification of at Least Five Distinct Epitope Specificities. Biochemistry, 2001, 40, 65-73.	2.5	32
89	Expression of growth differentiation factorâ€15/ macrophage inhibitory cytokineâ€1 (GDFâ€15/MICâ€1) in the perinatal, adult, and injured rat brain. Journal of Comparative Neurology, 2001, 439, 32-45.	1.6	122
90	The Propeptide of the Transforming Growth Factor-Î ² Superfamily Member, Macrophage Inhibitory Cytokine-1 (MIC-1), Is a Multifunctional Domain That Can Facilitate Protein Folding and Secretion. Journal of Biological Chemistry, 2001, 276, 16911-16918.	3.4	39

#	Article	IF	CITATIONS
91	Crystal Structure of a Soluble Form of the Intracellular Chloride Ion Channel CLIC1 (NCC27) at 1.4-Ã Resolution. Journal of Biological Chemistry, 2001, 276, 44993-45000.	3.4	180
92	MIC-1 and other TGF- \hat{I}^2 superfamily members in inflammation. , 2001, , 1-9.		0
93	The propeptide of macrophage inhibitory cytokine (MIC-1), a TGF-β superfamily member, acts as a quality control determinant for correctly folded MIC-1. EMBO Journal, 2000, 19, 2212-2220.	7.8	107
94	Expression of a TGF-β superfamily protein, macrophage inhibitory cytokine-1, in the yeast Pichia pastoris. Gene, 2000, 254, 67-76.	2.2	32
95	The Transforming Growth Factor-Î ² Superfamily Cytokine Macrophage Inhibitory Cytokine-1 Is Present in High Concentrations in the Serum of Pregnant Women1. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4781-4788.	3.6	137
96	The Transforming Growth Factor-Â Superfamily Cytokine Macrophage Inhibitory Cytokine-1 Is Present in High Concentrations in the Serum of Pregnant Women. Journal of Clinical Endocrinology and Metabolism, 2000, 85, 4781-4788.	3.6	107
97	Screening Procedure for <i>Pichia pastoris</i> Clones Containing Multiple Copy Gene Inserts. BioTechniques, 1999, 26, 1042-1044.	1.8	9
98	MIC-1 is a novel TGF-Î ² superfamily cytokine associated with macrophage activation. Journal of Leukocyte Biology, 1999, 65, 2-5.	3.3	221
99	MIC-1, a novel macrophage inhibitory cytokine, is a divergent member of the TGF-β superfamily. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 11514-11519.	7.1	972
100	The disulphide bond structure of thyroid-stimulating hormone β-subunit. Biochemical Journal, 1996, 314, 449-455.	3.7	18
101	Contribution of Specific Disulphide Bonds to Two Epitopes of Thyrotropin beta-Subunit Associated with Receptor Recognition. FEBS Journal, 1996, 240, 622-627.	0.2	11
102	Immunochemical characterization of two thyroid-stimulating hormone Î ² -subunit epitopes. Biochemical Journal, 1995, 308, 203-210.	3.7	12
103	Delineation of Tyrosine-Containing Epitopes within the beta Subunit of Bovine Thyrotropin. FEBS Journal, 1995, 228, 373-380.	0.2	8
104	Delineation of tyrosine-containing epitopes within the beta subunit of bovine thyrotropin. FEBS Journal, 1995, 228, 373-80.	0.2	0