
Chun-Ming Wong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3591552/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	RNA N6â€methyladenosine methyltransferaseâ€like 3 promotes liver cancer progression through YTHDF2â€dependent posttranscriptional silencing of SOCS2. Hepatology, 2018, 67, 2254-2270.	7.3	980
2	Genome-Wide Association Study in Asian Populations Identifies Variants in ETS1 and WDFY4 Associated with Systemic Lupus Erythematosus. PLoS Genetics, 2010, 6, e1000841.	3.5	378
3	Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16369-16374.	7.1	375
4	Non-coding RNAs in hepatocellular carcinoma: molecular functions and pathological implications. Nature Reviews Gastroenterology and Hepatology, 2018, 15, 137-151.	17.8	325
5	\hat{I}^2 -catenin mutation and overexpression in hepatocellular carcinoma. Cancer, 2001, 92, 136-145.	4.1	320
6	Hypoxia inducible factor HIF-1 promotes myeloid-derived suppressor cells accumulation through ENTPD2/CD39L1 in hepatocellular carcinoma. Nature Communications, 2017, 8, 517.	12.8	319
7	The MicroRNA miR-139 Suppresses Metastasis and Progression of Hepatocellular Carcinoma by Down-regulating Rho-Kinase 2. Gastroenterology, 2011, 140, 322-331.	1.3	268
8	Enhancer of zeste homolog 2 epigenetically silences multiple tumor suppressor microRNAs to promote liver cancer metastasis. Hepatology, 2012, 56, 622-631.	7.3	255
9	Genome-wide CRISPR/Cas9 library screening identified PHGDH as a critical driver for Sorafenib resistance in HCC. Nature Communications, 2019, 10, 4681.	12.8	229
10	MicroRNA-125b suppressesed human liver cancer cell proliferation and metastasis by directly targeting oncogene LIN28B2. Hepatology, 2010, 52, 1731-1740.	7.3	225
11	The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis. Molecular Cancer, 2020, 19, 44.	19.2	205
12	Lysyl oxidase-like 2 is critical to tumor microenvironment and metastatic niche formation in hepatocellular carcinoma. Hepatology, 2014, 60, 1645-1658.	7.3	197
13	Transketolase counteracts oxidative stress to drive cancer development. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E725-34.	7.1	186
14	Meta-analysis Followed by Replication Identifies Loci in or near CDKN1B, TET3, CD80, DRAM1, and ARID5B as Associated with Systemic Lupus Erythematosus in Asians. American Journal of Human Genetics, 2013, 92, 41-51.	6.2	184
15	Hypoxia induces myeloidâ€derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (Câ€C motif) ligand 26. Hepatology, 2016, 64, 797-813.	7.3	170
16	Deleted in Liver Cancer (DLC) 2 Encodes a RhoGAP Protein with Growth Suppressor Function and Is Underexpressed in Hepatocellular Carcinoma. Journal of Biological Chemistry, 2003, 278, 10824-10830.	3.4	167
17	Genetic and epigenetic alterations of DLC-1 gene in hepatocellular carcinoma. Cancer Research, 2003, 63, 7646-51.	0.9	164
18	Rho GTPase-Activating Protein Deleted in Liver Cancer Suppresses Cell Proliferation and Invasion in Hepatocellular Carcinoma. Cancer Research, 2005, 65, 8861-8868.	0.9	160

#	Article	IF	CITATIONS
19	Upâ€regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis. Hepatology, 2016, 63, 474-487.	7.3	140
20	Deregulation of microRNA expression occurs early and accumulates in early stages of HBV-associated multistep hepatocarcinogenesis. Journal of Hepatology, 2011, 54, 1177-1184.	3.7	136
21	Molecular pathogenesis of hepatocellular carcinoma. Liver International, 2008, 28, 160-174.	3.9	134
22	Long nonâ€coding <scp>RNA HOTTIP</scp> is frequently upâ€regulated in hepatocellular carcinoma and is targeted by tumour suppressive miRâ€125b. Liver International, 2015, 35, 1597-1606.	3.9	126
23	Rho-kinase 2 is frequently overexpressed in hepatocellular carcinoma and involved in tumor invasion. Hepatology, 2009, 49, 1583-1594.	7.3	122
24	Histone methyltransferase G9a promotes liver cancer development by epigenetic silencing of tumor suppressor gene RARRES3. Journal of Hepatology, 2017, 67, 758-769.	3.7	118
25	Induction of Oxidative Stress Through Inhibition of Thioredoxin Reductase 1 Is an Effective Therapeutic Approach for Hepatocellular Carcinoma. Hepatology, 2019, 69, 1768-1786.	7.3	111
26	Deleted in liver cancer 2 (DLC2) suppresses cell transformation by means of inhibition of RhoA activity. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 15207-15212.	7.1	110
27	PIN1 overexpression and \hat{l}^2 -catenin gene mutations are distinct oncogenic events in human hepatocellular carcinoma. Oncogene, 2004, 23, 4182-4186.	5.9	101
28	Folate cycle enzyme MTHFD1L confers metabolic advantages in hepatocellular carcinoma. Journal of Clinical Investigation, 2017, 127, 1856-1872.	8.2	100
29	Hepatocellular Carcinoma Cells Up-regulate PVRL1, Stabilizing PVR and Inhibiting the Cytotoxic T-Cell Response via TIGIT to Mediate Tumor Resistance to PD1 Inhibitors in Mice. Gastroenterology, 2020, 159, 609-623.	1.3	100
30	Hypoxia regulates the mitochondrial activity of hepatocellular carcinoma cells through HIF/HEY1/PINK1 pathway. Cell Death and Disease, 2019, 10, 934.	6.3	98
31	Downâ€regulation of TIMP2 by HIFâ€1α/miRâ€210/HIFâ€3α regulatory feedback circuit enhances cancer metasi in hepatocellular carcinoma. Hepatology, 2016, 64, 473-487.	tasis 7.3	96
32	Tissue factor pathway inhibitor-2 as a frequently silenced tumor suppressor gene in hepatocellular carcinoma. Hepatology, 2007, 45, 1129-1138.	7.3	93
33	Sequential alterations of microrna expression in hepatocellular carcinoma development and venous metastasis. Hepatology, 2012, 55, 1453-1461.	7.3	92
34	Histone lysine methyltransferase, suppressor of variegation 3-9 homolog 1, promotes hepatocellular carcinoma progression and is negatively regulated by microRNA-125b. Hepatology, 2013, 57, 637-647.	7.3	90
35	Aberrant Superâ€Enhancer Landscape in Human Hepatocellular Carcinoma. Hepatology, 2019, 69, 2502-2517.	7.3	90
36	HDPR1, a novel inhibitor of the WNT/β-catenin signaling, is frequently downregulated in hepatocellular carcinoma: involvement of methylation-mediated gene silencing. Oncogene, 2005, 24, 1607-1614.	5.9	87

#	Article	IF	CITATIONS
37	The liver-enriched transcription factor CREB-H is a growth suppressor protein underexpressed in hepatocellular carcinoma. Nucleic Acids Research, 2005, 33, 1859-1873.	14.5	86
38	ELF1 is associated with systemic lupus erythematosus in Asian populations. Human Molecular Genetics, 2011, 20, 601-607.	2.9	78
39	Evaluation of Nuclear Factor-κB, Urokinase-Type Plasminogen Activator, and HBx and Their Clinicopathological Significance in Hepatocellular Carcinoma. Clinical Cancer Research, 2004, 10, 4140-4149.	7.0	77
40	MiR-200b/200c/429 subfamily negatively regulates Rho/ROCK signaling pathway to suppress hepatocellular carcinoma metastasis. Oncotarget, 2015, 6, 13658-13670.	1.8	70
41	NDUFA4L2 Fine-tunes Oxidative Stress in Hepatocellular Carcinoma. Clinical Cancer Research, 2016, 22, 3105-3117.	7.0	68
42	Switching of Pyruvate Kinase Isoform L to M2 Promotes Metabolic Reprogramming in Hepatocarcinogenesis. PLoS ONE, 2014, 9, e115036.	2.5	67
43	Deleted in Liver Cancer 1 (DLC1) Negatively Regulates Rho/ROCK/MLC Pathway in Hepatocellular Carcinoma. PLoS ONE, 2008, 3, e2779.	2.5	62
44	Genome-Wide Association Study of Hepatocellular Carcinoma in Southern Chinese Patients with Chronic Hepatitis B Virus Infection. PLoS ONE, 2011, 6, e28798.	2.5	56
45	HELLS Regulates Chromatin Remodeling and Epigenetic Silencing of Multiple Tumor Suppressor Genes in Human Hepatocellular Carcinoma. Hepatology, 2019, 69, 2013-2030.	7.3	56
46	Cripto-1 contributes to stemness in hepatocellular carcinoma by stabilizing Dishevelled-3 and activating Wnt/ \hat{l}^2 -catenin pathway. Cell Death and Differentiation, 2018, 25, 1426-1441.	11.2	47
47	miR-874-3p is down-regulated in hepatocellular carcinoma and negatively regulates PIN1 expression. Oncotarget, 2017, 8, 11343-11355.	1.8	47
48	EZH2-Mediated H3K27me3 Is Involved in Epigenetic Repression of Deleted in Liver Cancer 1 in Human Cancers. PLoS ONE, 2013, 8, e68226.	2.5	45
49	RhoE is frequently down-regulated in hepatocellular carcinoma (HCC) and suppresses HCC invasion through antagonizing the Rho/Rho-Kinase/Myosin phosphatase target pathway. Hepatology, 2013, 57, 152-161.	7.3	42
50	MicroRNA-142-3p and microRNA-142-5p are downregulated in hepatocellular carcinoma and exhibit synergistic effects on cell motility. Frontiers of Medicine, 2015, 9, 331-343.	3.4	42
51	RALYL increases hepatocellular carcinoma stemness by sustaining the mRNA stability of TGF-β2. Nature Communications, 2021, 12, 1518.	12.8	42
52	Comparative <i>In Vitro</i> Cytotoxicity Study on Uncoated Magnetic Nanoparticles: Effects on Cell Viability, Cell Morphology, and Cellular Uptake. Journal of Nanoscience and Nanotechnology, 2012, 12, 9010-9017.	0.9	41
53	SERPINA5 inhibits tumor cell migration by modulating the fibronectinâ€integrin β1 signaling pathway in hepatocellular carcinoma. Molecular Oncology, 2014, 8, 366-377.	4.6	41
54	Hepatitis B Virus–Associated Multistep Hepatocarcinogenesis: A Stepwise Increase in Allelic Alterations. Cancer Research, 2008, 68, 5988-5996.	0.9	39

#	Article	IF	CITATIONS
55	Histone chaperone FACT complex mediates oxidative stress response to promote liver cancer progression. Gut, 2020, 69, 329-342.	12.1	39
56	RhoGTPases and Rho-effectors in hepatocellular carcinoma metastasis: ROCK N' Rho move it. Liver International, 2010, 30, 642-656.	3.9	38
57	Association of CD247 with systemic lupus erythematosus in Asian populations. Lupus, 2012, 21, 75-83.	1.6	38
58	Hypoxia-induced macropinocytosis represents a metabolic route for liver cancer. Nature Communications, 2022, 13, 954.	12.8	38
59	Novel pre-mRNA splicing of intronically integrated HBV generates oncogenic chimera in hepatocellular carcinoma. Journal of Hepatology, 2016, 64, 1256-1264.	3.7	36
60	Meta-analysis of GWAS on two Chinese populations followed by replication identifies novel genetic variants on the X chromosome associated with systemic lupus erythematosus. Human Molecular Genetics, 2015, 24, 274-284.	2.9	35
61	Liver cancer immunoassay with magnetic nanoparticles and MgO-based magnetic tunnel junction sensors. Journal of Applied Physics, 2012, 111, .	2.5	31
62	Hepatitis transactivator protein X promotes extracellular matrix modification through HIF/LOX pathway in liver cancer. Oncogenesis, 2018, 7, 44.	4.9	31
63	RSK2-inactivating mutations potentiate MAPK signaling and support cholesterol metabolism in hepatocellular carcinoma. Journal of Hepatology, 2021, 74, 360-371.	3.7	30
64	Genome-wide CRISPR-Cas9 knockout library screening identified PTPMT1 in cardiolipin synthesis is crucial to survival in hypoxia in liver cancer. Cell Reports, 2021, 34, 108676.	6.4	30
65	RhoE/ROCK2 regulates chemoresistance through NF-κB/IL-6/ STAT3 signaling in hepatocellular carcinoma. Oncotarget, 0, 7, 41445-41459.	1.8	30
66	Sterilization on dextran-coated iron oxide nanoparticles: Effects of autoclaving, filtration, UV irradiation, and ethanol treatment. Microelectronic Engineering, 2013, 111, 310-313.	2.4	29
67	Regulation of hepatocarcinogenesis by microRNAs. Frontiers in Bioscience - Elite, 2013, E5, 49-60.	1.8	29
68	Genome-wide search followed by replication reveals genetic interaction of <i>CD80</i> and <i>ALOX5AP</i> associated with systemic lupus erythematosus in Asian populations. Annals of the Rheumatic Diseases, 2016, 75, 891-898.	0.9	28
69	<i>HAlâ€2</i> is epigenetically downregulated in human hepatocellular carcinoma, and its Kunitz domain type 1 is critical for antiâ€invasive functions. International Journal of Cancer, 2009, 124, 1811-1819.	5.1	24
70	Two missense variants in UHRF1BP1 are independently associated with systemic lupus erythematosus in Hong Kong Chinese. Genes and Immunity, 2011, 12, 231-234.	4.1	24
71	Transcriptional Repressive H3K9 and H3K27 Methylations Contribute to DNMT1-Mediated DNA Methylation Recovery. PLoS ONE, 2011, 6, e16702.	2.5	24
72	Requirement of CRTC1 coactivator for hepatitis B virus transcription. Nucleic Acids Research, 2014, 42, 12455-12468.	14.5	23

#	Article	IF	CITATIONS
73	Decoding the Roles of Long Noncoding RNAs in Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2021, 22, 3137.	4.1	21
74	Epigenetic dysregulation in hepatocellular carcinoma: focus on polycomb group proteins. Frontiers of Medicine, 2013, 7, 231-241.	3.4	20
75	Bromodomain-containing protein BRPF1 is a therapeutic target for liver cancer. Communications Biology, 2021, 4, 888.	4.4	18
76	Deleted in liver cancer 1 isoforms are distinctly expressed in human tissues, functionally different and under differential transcriptional regulation in hepatocellular carcinoma. Liver International, 2010, 30, 139-148.	3.9	17
77	Poloâ€like kinase 4 inhibitor CFIâ€400945 suppresses liver cancer through cell cycle perturbation and eliciting antitumor immunity. Hepatology, 2023, 77, 729-744.	7.3	16
78	Deregulated GATA6 modulates stem cellâ€like properties and metabolic phenotype in hepatocellular carcinoma. International Journal of Cancer, 2019, 145, 1860-1873.	5.1	14
79	Adaptive and Constitutive Activations of Malic Enzymes Confer Liver Cancer Multilayered Protection Against Reactive Oxygen Species. Hepatology, 2021, 74, 776-796.	7.3	13
80	Meta-analysis of two Chinese populations identifies an autoimmune disease risk allele in 22q11.21 as associated with systemic lupus erythematosus. Arthritis Research and Therapy, 2015, 17, 67.	3.5	6
81	Histone chaperone FACT complex coordinates with HIF to mediate an expeditious transcription program to adapt to poorly oxygenated cancers. Cell Reports, 2022, 38, 110304.	6.4	6
82	Quantitative analysis of hepatic cell morphology and migration in response to nanoporous and microgrooved surface structures. Microelectronic Engineering, 2013, 111, 396-403.	2.4	5
83	Hormonal control of the metabolic machinery of hepatocellular carcinoma. Hepatobiliary Surgery and Nutrition, 2016, 5, 195-197.	1.5	3
84	Reply to: "Deregulation of microRNAs expression occurs in stages of multistep hepatocarcinogenesis: Why is it different?― Journal of Hepatology, 2012, 56, 1426-1427.	3.7	0
85	DLC1., 2011, , 1126-1128.		0
86	Epigenetic Regulation of EZH2 and Its Targeted MicroRNAs. , 2013, , 33-61.		0
87	DLC1., 2014, , 1379-1381.		0
88	DLC1., 2014, , 1-4.		0
89	Targeting the Metabolic Vulnerability of ARID1A-Deficient Hepatocellular Carcinoma. Cellular and Molecular Gastroenterology and Hepatology, 2022, 14, 241-242.	4.5	0