Johannes A Lercher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3590290/publications.pdf

Version: 2024-02-01

592 papers 35,183 citations

92 h-index 7496 151 g-index

633 all docs

633 docs citations

633 times ranked

19106 citing authors

#	Article	IF	CITATIONS
1	Single-site trinuclear copper oxygen clusters in mordenite for selective conversion of methane to methanol. Nature Communications, 2015, 6, 7546.	5.8	623
2	Highly Selective Catalytic Conversion of Phenolic Bioâ€Oil to Alkanes. Angewandte Chemie - International Edition, 2009, 48, 3987-3990.	7.2	590
3	Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules. Catalysis Today, 1996, 27, 353-376.	2.2	473
4	Aqueous-phase hydrodeoxygenation of bio-derived phenols to cycloalkanes. Journal of Catalysis, 2011, 280, 8-16.	3.1	469
5	Towards Quantitative Catalytic Lignin Depolymerization. Chemistry - A European Journal, 2011, 17, 5939-5948.	1.7	465
6	Ni-Catalyzed Cleavage of Aryl Ethers in the Aqueous Phase. Journal of the American Chemical Society, 2012, 134, 20768-20775.	6.6	415
7	Oxidative Dehydrogenation of Ethane: Common Principles and Mechanistic Aspects. ChemCatChem, 2013, 5, 3196-3217.	1.8	360
8	Stabilizing Catalytic Pathways via Redundancy: Selective Reduction of Microalgae Oil to Alkanes. Journal of the American Chemical Society, 2012, 134, 9400-9405.	6.6	317
9	Coordination Modulation Induced Synthesis of Nanoscale Eu _{1â€<i>x</i>i>} Tb _{<i>x</i>} â€Metalâ€Organic Frameworks for Luminescent Thin Films. Advanced Materials, 2010, 22, 4190-4192.	11.1	314
10	Towards Quantitative Conversion of Microalgae Oil to Dieselâ€Range Alkanes with Bifunctional Catalysts. Angewandte Chemie - International Edition, 2012, 51, 2072-2075.	7.2	297
11	Structure Sensitivity of the Hydrogenation of Crotonaldehyde over Pt/SiO2and Pt/TiO2. Journal of Catalysis, 1997, 166, 25-35.	3.1	289
12	Coke formation and deactivation pathways on H-ZSM-5 in the conversion of methanol to olefins. Journal of Catalysis, 2015, 325, 48-59.	3.1	289
13	Catalytic deoxygenation of microalgae oil to green hydrocarbons. Green Chemistry, 2013, 15, 1720.	4.6	285
14	Selective Hydrodeoxygenation of Ligninâ€Derived Phenolic Monomers and Dimers to Cycloalkanes on Pd/C and HZSMâ€5 Catalysts. ChemCatChem, 2012, 4, 64-68.	1.8	284
15	Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal–Organic Framework. Journal of the American Chemical Society, 2017, 139, 10294-10301.	6.6	282
16	Upgrading Pyrolysis Oil over Ni/HZSMâ€5 by Cascade Reactions. Angewandte Chemie - International Edition, 2012, 51, 5935-5940.	7.2	281
17	Monomolecular Conversion of Light Alkanes over H-ZSM-5. Journal of Catalysis, 1995, 157, 388-395.	3.1	278
18	Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal–Organic Framework. Journal of the American Chemical Society, 2016, 138, 1977-1982.	6.6	273

#	Article	IF	Citations
19	Elementary steps of NOx adsorption and surface reaction on aÂcommercial storage–reduction catalyst. Journal of Catalysis, 2003, 214, 308-316.	3.1	266
20	Hydrogen Transfer Pathways during Zeolite Catalyzed Methanol Conversion to Hydrocarbons. Journal of the American Chemical Society, 2016, 138, 15994-16003.	6.6	265
21	Towards understanding the bifunctional hydrodeoxygenation and aqueous phase reforming of glycerol. Journal of Catalysis, 2010, 269, 411-420.	3.1	263
22	Mono and Bifunctional Pathways of CO2/CH4Reforming over Pt and Rh Based Catalysts. Journal of Catalysis, 1998, 176, 93-101.	3.1	257
23	Adsorption of water on ZSM 5 zeolites. The Journal of Physical Chemistry, 1989, 93, 4837-4843.	2.9	252
24	Hydrodeoxygenation of bio-derived phenols to hydrocarbons using RANEY® Ni and Nafion/SiO ₂ catalysts. Chemical Communications, 2010, 46, 412-414.	2.2	250
25	Stability of Zeolites in Hot Liquid Water. Journal of Physical Chemistry C, 2010, 114, 19582-19595.	1.5	246
26	BrÃ, nsted Acid Site and Pore Controlled Siting of Alkane Sorption in Acidic Molecular Sieves. Journal of Physical Chemistry B, 1997, 101, 5414-5419.	1.2	242
27	Synergistic effects of Ni and acid sites for hydrogenation and C–O bond cleavage of substituted phenols. Green Chemistry, 2015, 17, 1204-1218.	4.6	241
28	On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5. Journal of Catalysis, 2014, 317, 185-197.	3.1	236
29	Compensation Phenomena in Heterogeneous Catalysis: General Principles and a Possible Explanation. Catalysis Reviews - Science and Engineering, 2000, 42, 323-383.	5.7	234
30	Alkane sorption in molecular sieves: The contribution of ordering, intermolecular interactions, and sorption on BrÃ,nsted acid sites. Zeolites, 1997, 18, 75-81.	0.9	230
31	Influence of Surface Modification on the Acid Site Distribution of HZSM-5. Journal of Physical Chemistry B, 2002, 106, 9552-9558.	1.2	227
32	First-Principles Study of Phenol Hydrogenation on Pt and Ni Catalysts in Aqueous Phase. Journal of the American Chemical Society, 2014, 136, 10287-10298.	6.6	226
33	The State of Zirconia Supported Platinum Catalysts for CO2/CH4Reforming. Journal of Catalysis, 1997, 171, 279-286.	3.1	223
34	Stability and reactivity of copper oxo-clusters in ZSM-5 zeolite for selective methane oxidation to methanol. Journal of Catalysis, 2016, 338, 305-312.	3.1	217
35	Selective catalytic hydroalkylation and deoxygenation of substituted phenols to bicycloalkanes. Journal of Catalysis, 2012, 288, 92-103.	3.1	213
36	Manipulating Catalytic Pathways: Deoxygenation of Palmitic Acid on Multifunctional Catalysts. Chemistry - A European Journal, 2013, 19, 4732-4741.	1.7	212

#	Article	IF	CITATIONS
37	Comparison of kinetics, activity and stability of Ni/HZSM-5 and Ni/Al2O3-HZSM-5 for phenol hydrodeoxygenation. Journal of Catalysis, 2012, 296, 12-23.	3.1	207
38	Adsorption complexes of methanol on zeolite ZSM-5. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 3039.	1.7	205
39	Quantitatively Probing the Al Distribution in Zeolites. Journal of the American Chemical Society, 2014, 136, 8296-8306.	6.6	199
40	Lewis–Brønsted Acid Pairs in Ga/H-ZSM-5 To Catalyze Dehydrogenation of Light Alkanes. Journal of the American Chemical Society, 2018, 140, 4849-4859.	6.6	198
41	On the Role of the Pore Size and Tortuosity for Sorption of Alkanes in Molecular Sieves. Journal of Physical Chemistry B, 1997, 101, 1273-1278.	1.2	193
42	Tunable Water and CO ₂ Sorption Properties in Isostructural Azine-Based Covalent Organic Frameworks through Polarity Engineering. Chemistry of Materials, 2015, 27, 7874-7881.	3.2	192
43	Adsorption of C2â^'C8 <i>n</i> -Alkanes in Zeolites. Journal of Physical Chemistry C, 2011, 115, 1204-1219.	1.5	187
44	Electrocatalytic Hydrogenation of Biomass-Derived Organics: A Review. Chemical Reviews, 2020, 120, 11370-11419.	23.0	185
45	Carbon Deposition during Carbon Dioxide Reforming of Methaneâ€"Comparison between Pt/Al2O3 and Pt/ZrO2. Journal of Catalysis, 2001, 197, 34-42.	3.1	183
46	Transport and Isomerization of Xylenes over HZSM-5 Zeolites. Journal of Catalysis, 1993, 139, 24-33.	3.1	178
47	Methyl Chloride Production from Methane over Lanthanum-Based Catalysts. Journal of the American Chemical Society, 2007, 129, 2569-2576.	6.6	174
48	Design of stable catalysts for methane-carbon dioxide reforming. Studies in Surface Science and Catalysis, 1996, 101, 463-472.	1.5	166
49	Deactivation and Coke Accumulation during CO2/CH4Reforming over Pt Catalysts. Journal of Catalysis, 1999, 183, 336-343.	3.1	166
50	Impact of the local environment of BrÃ, nsted acid sites in ZSM-5 on the catalytic activity in n-pentane cracking. Journal of Catalysis, 2014, 316, 93-102.	3.1	165
51	Steaming of Zeolite BEA and Its Effect on Acidity: A Comparative NMR and IR Spectroscopic Study. Journal of Physical Chemistry C, 2011, 115, 8005-8013.	1.5	163
52	Dealumination of HZSM-5 via steam-treatment. Microporous and Mesoporous Materials, 2012, 164, 9-20.	2.2	161
53	Effects of the Support on the Performance and Promotion of (Ni)MoS ₂ Catalysts for Simultaneous Hydrodenitrogenation and Hydrodesulfurization. ACS Catalysis, 2014, 4, 1487-1499.	5.5	157
54	The synergistic effect between Ni sites and Ni-Fe alloy sites on hydrodeoxygenation of lignin-derived phenols. Applied Catalysis B: Environmental, 2019, 253, 348-358.	10.8	155

#	Article	IF	CITATIONS
55	Synthesis, characterization and catalytic activity of the pillared molecular sieve MCM-36. Microporous and Mesoporous Materials, 1998, 25, 207-224.	2.2	154
56	Impact of solvent for individual steps of phenol hydrodeoxygenation with Pd/C and HZSM-5 as catalysts. Journal of Catalysis, 2014, 309, 362-375.	3.1	154
57	Formation Mechanism of the First Carbon–Carbon Bond and the First Olefin in the Methanol Conversion into Hydrocarbons. Angewandte Chemie - International Edition, 2016, 55, 5723-5726.	7.2	154
58	On the mechanism of catalyzed isobutane/butene alkylation by zeolites. Journal of Catalysis, 2004, 224, 80-93.	3.1	150
59	Determining the location and nearest neighbours of aluminium in zeolites with atom probe tomography. Nature Communications, 2015, 6, 7589.	5.8	139
60	On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5. Journal of Catalysis, 2014, 314, 21-31.	3.1	135
61	Preparation of Barium Titanates from Oxalates. Journal of the American Ceramic Society, 1993, 76, 1185-1190.	1.9	132
62	Selective Methane Oxidation to Methanol on Cu-Oxo Dimers Stabilized by Zirconia Nodes of an NU-1000 Metal–Organic Framework. Journal of the American Chemical Society, 2019, 141, 9292-9304.	6.6	131
63	Importance of Size and Distribution of Ni Nanoparticles for the Hydrodeoxygenation of Microalgae Oil. Chemistry - A European Journal, 2013, 19, 9833-9842.	1.7	130
64	Surface Acidity and Basicity of La2O3, LaOCl, and LaCl3Characterized by IR Spectroscopy, TPD, and DFT Calculations. Journal of Physical Chemistry B, 2004, 108, 15770-15781.	1.2	127
65	Determination of proton affinity of zeolites and zeolite-like solids by low-temperature adsorption of carbon monoxide. Zeolites, 1989, 9, 539-543.	0.9	124
66	Generation and Characterization of Well-Defined Zn2+ Lewis Acid Sites in Ion Exchanged Zeolite BEA. Journal of Physical Chemistry B, 2004, 108, 4116-4126.	1.2	121
67	Mechanisms of catalytic cleavage of benzyl phenyl ether in aqueous and apolar phases. Journal of Catalysis, 2014, 311, 41-51.	3.1	120
68	Accurate Adsorption Thermodynamics of Small Alkanes in Zeolites. Ab initio Theory and Experiment for H-Chabazite. Journal of Physical Chemistry C, 2015, 119, 6128-6137.	1.5	120
69	Genesis and Stability of Hydronium lons in Zeolite Channels. Journal of the American Chemical Society, 2019, 141, 3444-3455.	6.6	119
70	Controlled decrease of acid strength by orthophosphoric acid on ZSM5. Applied Catalysis, 1986, 25, 215-222.	1.1	117
71	Hydrogenation of benzaldehyde via electrocatalysis and thermal catalysis on carbon-supported metals. Journal of Catalysis, 2018, 359, 68-75.	3.1	116
72	Studies on the deactivation of NO storage-reduction catalysts by sulfur dioxide. Catalysis Today, 2002, 75, 413-419.	2.2	115

#	Article	IF	Citations
73	Dehydrogenation of Light Alkanes over Zeolites. Journal of Catalysis, 1997, 172, 127-136.	3.1	111
74	Mechanism and Kinetics of CO ₂ Adsorption on Surface Bonded Amines. Journal of Physical Chemistry C, 2015, 119, 4126-4135.	1.5	111
75	Aqueous Phase Hydroalkylation and Hydrodeoxygenation of Phenol by Dual Functional Catalysts Comprised of Pd/C and H/La-BEA. ACS Catalysis, 2012, 2, 2714-2723.	5.5	110
76	Dehydration Pathways of 1-Propanol on HZSM-5 in the Presence and Absence of Water. Journal of the American Chemical Society, 2015, 137, 15781-15794.	6.6	110
77	Mechanisms of selective cleavage of C–O bonds in di-aryl ethers in aqueous phase. Journal of Catalysis, 2014, 309, 280-290.	3.1	108
78	Carbonium ion formation in zeolite catalysis. Catalysis Letters, 1994, 27, 91-96.	1.4	106
79	An Explanation for the Enhanced Activity for Light Alkane Conversion in Mildly Steam Dealuminated Mordenite: The Dominant Role of Adsorption. Journal of Catalysis, 2001, 202, 129-140.	3.1	106
80	Methane autothermal reforming with and without ethane over mono- and bimetal catalysts prepared from hydrotalcite precursors. Journal of Catalysis, 2005, 229, 185-196.	3.1	106
81	Nature and Location of Cationic Lanthanum Species in High Alumina Containing Faujasite Type Zeolites. Journal of Physical Chemistry C, 2011, 115, 21763-21776.	1.5	105
82	Adsorption and surface reactions of thiophene on ZSM 5 zeolites. The Journal of Physical Chemistry, 1992, 96, 2669-2675.	2.9	104
83	Aqueous phase electrocatalysis and thermal catalysis for the hydrogenation of phenol at mild conditions. Applied Catalysis B: Environmental, 2016, 182, 236-246.	10.8	103
84	Common mechanistic aspects of liquid and solid acid catalyzed alkylation of isobutane with n -butene. Journal of Catalysis, 2003, 216, 313-323.	3.1	102
85	A New Type of Low-ϰ Dielectric Films Based on Polysilsesquioxanes. Advanced Materials, 2002, 14, 1369-1373.	11.1	101
86	Alkylation of Toluene over Basic Catalysts—Key Requirements for Side Chain Alkylation. Journal of Catalysis, 1998, 180, 56-65.	3.1	100
87	Critical role of formaldehyde during methanol conversion to hydrocarbons. Nature Communications, 2019, 10, 1462.	5.8	100
88	Reductive deconstruction of organosolv lignin catalyzed by zeolite supported nickel nanoparticles. Green Chemistry, 2015, 17, 5079-5090.	4.6	98
89	On the coke deposition in dry reforming of methane at elevated pressures. Applied Catalysis A: General, 2015, 504, 599-607.	2.2	97
90	Enhancement of Sorption Processes in the Zeolite Hâ€ZSM5 by Postsynthetic Surface Modification. Angewandte Chemie - International Edition, 2009, 48, 533-538.	7.2	96

#	Article	IF	Citations
91	Xylene isomerization with surface-modified HZSM-5 zeolite catalysts: An in situ IR study. Journal of Catalysis, 2006, 241, 304-311.	3.1	95
92	Oxidative conversion of propane over lithium-promoted magnesia catalyst I. Kinetics and mechanism. Journal of Catalysis, 2003, 218, 296-306.	3.1	94
93	Enhancing the catalytic activity of hydronium ions through constrained environments. Nature Communications, 2017, 8, 14113.	5.8	94
94	Rh(CAAC)-Catalyzed Arene Hydrogenation: Evidence for Nanocatalysis and Sterically Controlled Site-Selective Hydrogenation. ACS Catalysis, 2018, 8, 8441-8449.	5.5	94
95	Role of Amine Functionality for CO ₂ Chemisorption on Silica. Journal of Physical Chemistry B, 2016, 120, 1988-1995.	1.2	92
96	Oxidative dehydrogenation of propane over niobia supported vanadium oxide catalysts. Catalysis Today, 1996, 28, 139-145.	2.2	91
97	Selective reduction of NO to N2 in the presence of oxygen over supported silver catalysts. Applied Catalysis B: Environmental, 2002, 37, 205-216.	10.8	90
98	Impact of the Oxygen Defects and the Hydrogen Concentration on the Surface of Tetragonal and Monoclinic ZrO ₂ on the Reduction Rates of Stearic Acid on Ni/ZrO ₂ . Chemistry - A European Journal, 2015, 21, 2423-2434.	1.7	90
99	Confinement effects and acid strength in zeolites. Nature Communications, 2021, 12, 2630.	5.8	90
100	Selective Alkylation of Toluene over Basic Zeolites: Anin SituInfrared Spectroscopic Investigation. Journal of Catalysis, 1997, 168, 442-449.	3.1	89
101	Palladium atalyzed Hydrolytic Cleavage of Aromatic Câ^O Bonds. Angewandte Chemie - International Edition, 2017, 56, 2110-2114.	7.2	89
102	Sinterâ€Resistant Platinum Catalyst Supported by Metal–Organic Framework. Angewandte Chemie - International Edition, 2018, 57, 909-913.	7.2	88
103	Well-Defined Rhodium–Gallium Catalytic Sites in a Metal–Organic Framework: Promoter-Controlled Selectivity in Alkyne Semihydrogenation to <i>E</i> Alkenes. Journal of the American Chemical Society, 2018, 140, 15309-15318.	6.6	88
104	The role of the oxidic support on the deactivation of Pt catalysts during the CO2 reforming of methane. Catalysis Today, 1996, 29, 349-353.	2.2	87
105	Catalytic properties of postsynthesis phosphorus-modified H-ZSM5 zeolites. Journal of Catalysis, 1989, 115, 291-300.	3.1	86
106	Oxidative Activation ofn-Butane on Sulfated Zirconia. Journal of the American Chemical Society, 2005, 127, 16159-16166.	6.6	86
107	Electrocatalytic Hydrogenation of Phenol over Platinum and Rhodium: Unexpected Temperature Effects Resolved. ACS Catalysis, 2016, 6, 7466-7470.	5.5	86
108	Ni ₃ P as a high-performance catalytic phase for the hydrodeoxygenation of phenolic compounds. Green Chemistry, 2018, 20, 609-619.	4.6	86

#	Article	IF	CITATIONS
109	Copper-zirconia interfaces in UiO-66 enable selective catalytic hydrogenation of CO2 to methanol. Nature Communications, 2020, $11,5849$.	5.8	86
110	Solvent-determined mechanistic pathways in zeolite-H-BEA-catalysed phenol alkylation. Nature Catalysis, 2018, 1, 141-147.	16.1	85
111	Heterogeneous catalysts for hydroamination reactions: structure–activity relationship. Journal of Catalysis, 2004, 221, 302-312.	3.1	84
112	Deoxygenation of Palmitic Acid on Unsupported Transition-Metal Phosphides. ACS Catalysis, 2017, 7, 6331-6341.	5.5	83
113	Influence of Hydronium Ions in Zeolites on Sorption. Angewandte Chemie - International Edition, 2019, 58, 3450-3455.	7.2	83
114	Effect of Broensted and Lewis sites in ferrierites on skeletal isomerization of n-butenes. Applied Catalysis A: General, 1999, 182, 297-308.	2.2	82
115	Decisive role of transport rate of products for zeolite para-selectivity: Effect of coke deposition and external surface silylation on activity and selectivity of HZSM-5 in alkylation of toluene. Zeolites, 1996, 17, 265-271.	0.9	81
116	Hydrogenation of crotonaldehyde over Pt based bimetallic catalysts. Journal of Molecular Catalysis A, 1997, 121, 69-80.	4.8	81
117	Design of stable Ni/ZrO2 catalysts for dry reforming of methane. Journal of Catalysis, 2017, 356, 147-156.	3.1	81
118	Acid–base properties of alumina–magnesia mixed oxides. Part 4.—Infrared study of adsorption of carbon dioxide. Journal of the Chemical Society Faraday Transactions I, 1984, 80, 949.	1.0	79
119	Deactivation pathways in zeolite-catalyzed isobutane/butene alkylation. Journal of Catalysis, 2003, 220, 192-206.	3.1	79
120	Improving Stability of Zeolites in Aqueous Phase via Selective Removal of Structural Defects. Journal of the American Chemical Society, 2016, 138, 4408-4415.	6.6	79
121	Role of the ionic environment in enhancing the activity of reacting molecules in zeolite pores. Science, 2021, 372, 952-957.	6.0	79
122	n-Butane Isomerization over Acidic Mordenite. Journal of Catalysis, 1995, 155, 376-382.	3.1	78
123	Comparison of kinetics and reaction pathways for hydrodeoxygenation of C3 alcohols on Pt/Al2O3. Catalysis Today, 2012, 183, 3-9.	2.2	78
124	Direct production of naphthenes and paraffins from lignin. Chemical Communications, 2015, 51, 17580-17583.	2.2	78
125	Infrared Microscopic Study of Sorption and Diffusion of Toluene in ZSM-5. The Journal of Physical Chemistry, 1994, 98, 7436-7439.	2.9	77
126	Influence of alkali carbonates on benzyl phenyl ether cleavage pathways in superheated water. Applied Catalysis B: Environmental, 2010, 95, 71-77.	10.8	77

#	Article	IF	Citations
127	Anharmonicity and Confinement in Zeolites: Structure, Spectroscopy, and Adsorption Free Energy of Ethanol in H-ZSM-5. Journal of Physical Chemistry C, 2016, 120, 7172-7182.	1.5	77
128	Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures. Journal of Catalysis, 2004, 227, 130-137.	3.1	76
129	Understanding the impact of aluminum oxide binder on Ni/HZSM-5 for phenol hydrodeoxygenation. Applied Catalysis B: Environmental, 2013, 132-133, 282-292.	10.8	76
130	Bulk and γâ€'Al2O3-supported Ni2P and MoP for hydrodeoxygenation of palmitic acid. Applied Catalysis B: Environmental, 2016, 180, 301-311.	10.8	76
131	Adsorption of hydrogen sulfide on ZSM 5 zeolites. The Journal of Physical Chemistry, 1992, 96, 2230-2235.	2.9	75
132	On the formation of the acid sites in lanthanum exchanged X zeolites used for isobutane/cis-2-butene alkylation. Microporous and Mesoporous Materials, 2005, 83, 309-318.	2.2	75
133	Comparison of zeolites LaX and LaY as catalysts for isobutane/2-butene alkylation. Applied Catalysis A: General, 2008, 336, 89-100.	2.2	74
134	Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires. Journal of the American Chemical Society, 2017, 139, 10410-10418.	6.6	74
135	Integrated catalytic and electrocatalytic conversion of substituted phenols and diaryl ethers. Journal of Catalysis, 2016, 344, 263-272.	3.1	73
136	An in situ IR study of the NOx adsorption/reduction mechanism on modified Y zeolites. Physical Chemistry Chemical Physics, 2003, 5, 1897-1905.	1.3	72
137	Support effects in the aqueous phase reforming of glycerol over supported platinum catalysts. Applied Catalysis A: General, 2012, 431-432, 113-119.	2.2	71
138	Effect of Location and Distribution of Al Sites in ZSM-5 on the Formation of Cu-Oxo Clusters Active for Direct Conversion of Methane to Methanol. Topics in Catalysis, 2016, 59, 1554-1563.	1.3	71
139	Palladiumâ€Catalyzed Hydrolytic Cleavage of Aromatic Câ^O Bonds. Angewandte Chemie, 2017, 129, 2142-2146.	1.6	71
140	Tracking the Chemical Transformations at the BrÃ, nsted Acid Site upon Water-Induced Deprotonation in a Zeolite Pore. Chemistry of Materials, 2017, 29, 9030-9042.	3.2	71
141	Acidic and basic sites of maim group mixed metal oxides. Materials Chemistry and Physics, 1988, 18, 577-593.	2.0	70
142	Acetic Acid Reforming over Rh Supported on La ₂ 3/CeO ₂ â€"ZrO ₂ : Catalytic Performance and Reaction Pathway Analysis. ACS Catalysis, 2013, 3, 1919-1928.	5.5	70
143	Hydrogenation of tetralin on silica–alumina-supported Pt catalysts I. Physicochemical characterization of the catalytic materials. Journal of Catalysis, 2007, 251, 485-496.	3.1	69
144	Aqueous phase catalytic and electrocatalytic hydrogenation of phenol and benzaldehyde over platinum group metals. Journal of Catalysis, 2020, 382, 372-384.	3.1	68

#	Article	IF	CITATIONS
145	Roles of Cu+ and CuO sites in liquid-phase hydrogenation of esters on core-shell CuZnx@C catalysts. Applied Catalysis B: Environmental, 2020, 267, 118698.	10.8	68
146	Interaction of Methanol with Alkali Metal Exchanged Molecular Sieves. 1. IR Spectroscopic Study. Journal of Physical Chemistry B, 2000, 104, 8624-8630.	1.2	67
147	Mechanistic features of the ethane oxidative dehydrogenation by in situ FTIR spectroscopy over a MoO3/Al2O3 catalyst. Applied Catalysis A: General, 2004, 264, 73-80.	2.2	67
148	Impact of Forming and Modification with Phosphoric Acid on the Acid Sites of HZSM-5. Journal of Physical Chemistry C, 2010, 114, 15763-15770.	1.5	67
149	In Situ IR spectroscopic study of the surface species during methylation of toluene over HZSM-5. Journal of Catalysis, 1991, 132, 244-252.	3.1	66
150	Liquid phase hydrogenation of crotonaldehyde over Pt/SiO2 catalysts. Applied Catalysis A: General, 1997, 163, 111-122.	2.2	66
151	Sulfur-Tolerant Pt-Supported Zeolite Catalysts for Benzene Hydrogenation. Journal of Catalysis, 2001, 201, 60-69.	3.1	66
152	Coadsorption of toluene and methanol on HZSM-5 zeolites. The Journal of Physical Chemistry, 1991, 95, 3736-3740.	2.9	65
153	Formation of Solvent Cages around Organometallic Complexes in Thin Films of Supported Ionic Liquid. Journal of the American Chemical Society, 2006, 128, 13990-13991.	6.6	65
154	Catalytic routes and oxidation mechanisms in photoreforming of polyols. Journal of Catalysis, 2016, 344, 806-816.	3.1	65
155	Hydroxyl groups in phosphorus-modified HZSM-5. Applied Catalysis, 1989, 53, 299-312.	1.1	64
156	Title is missing!. Topics in Catalysis, 2000, 10, 295-305.	1.3	64
157	Interaction of Methanol with Alkali Metal Exchanged Molecular Sieves. 2. Density Functional Study. Journal of Physical Chemistry B, 2000, 104, 8614-8623.	1.2	63
158	Multitechnique Characterization of Coke Produced during Commercial Resid FCC Operation. Industrial & Engineering Chemistry Research, 2005, 44, 2069-2077.	1.8	63
159	Impact of Zeolite Aging in Hot Liquid Water on Activity for Acid-Catalyzed Dehydration of Alcohols. Journal of the American Chemical Society, 2015, 137, 10374-10382.	6.6	63
160	On the Enhanced Selectivity of HZSM-5 Modified by Chemical Liquid Deposition. Topics in Catalysis, 2003, 22, 101-106.	1.3	62
161	Methanol Usage in Toluene Methylation with Medium and Large Pore Zeolites. ACS Catalysis, 2013, 3, 817-825.	5.5	62
162	Tailoring mesoscopically structured H-ZSM5 zeolites for toluene methylation. Journal of Catalysis, 2014, 311, 271-280.	3.1	62

#	Article	IF	Citations
163	The Nature of Hydrogen Adsorption on Platinum in the Aqueous Phase. Angewandte Chemie - International Edition, 2019, 58, 3527-3532.	7.2	62
164	Elementary Mechanistic Steps and the Influence of Process Variables in Isobutane Alkylation over H-BEA. Journal of Catalysis, 1998, 176, 192-203.	3.1	61
165	Activity and Selectivity Control in Reductive Amination of Butyraldehyde over Noble Metal Catalysts. Catalysis Letters, 2005, 104, 23-28.	1.4	61
166	Synthesis of highly active sulfated zirconia by sulfation with SO3. Journal of Catalysis, 2006, 238, 39-45.	3.1	61
167	Infrared spectroscopic study of hydroxyl group acid strength of silica, alumina, and magnesia mixed oxides. Journal of Catalysis, 1982, 77, 152-158.	3.1	60
168	Temperature-programmed reduction of silica-supported platinum/nickel catalysts studied by XANES. The Journal of Physical Chemistry, 1992, 96, 1324-1328.	2.9	60
169	Infrared and Raman Spectroscopy for Characterizing Zeolites. Studies in Surface Science and Catalysis, 2007, 168, 435-476.	1.5	60
170	Formation of Active Cu-oxo Clusters for Methane Oxidation in Cu-Exchanged Mordenite. Journal of Physical Chemistry C, 2019, 123, 8759-8769.	1.5	60
171	Nature of acid sites in SAPO5 molecular sieves. Part 1.—Effects of the concentration of incorporated silicon. Journal of the Chemical Society Faraday Transactions I, 1988, 84, 4457.	1.0	59
172	Metal organic frameworks based on Cu2+ and benzene-1,3,5-tricarboxylate as host for SO2 trapping agents. Comptes Rendus Chimie, 2005, 8, 753-763.	0.2	59
173	Atomicâ€scale Determination of Active Facets on the MoVTeNb Oxide M1 Phase and Their Intrinsic Catalytic Activity for Ethane Oxidative Dehydrogenation. Angewandte Chemie - International Edition, 2016, 55, 8873-8877.	7.2	59
174	Design and synthesis of highly active MoVTeNb-oxides for ethane oxidative dehydrogenation. Nature Communications, 2019, 10, 4012.	5.8	59
175	FeCrAl as a Catalyst Support. Chemical Reviews, 2020, 120, 7516-7550.	23.0	59
176	Chapter 8 Techniques of zeolite characterization. Studies in Surface Science and Catalysis, 2001, 137, 345-386.	1.5	58
177	Sulfur tolerance of Pt/mordenites for benzene hydrogenation. Catalysis Today, 2002, 73, 105-112.	2.2	58
178	Comparison of the Transport of Aromatic Compounds in Small and Large MFI Particles. Journal of Physical Chemistry C, 2009, 113, 20435-20444.	1.5	58
179	On the location, strength and accessibility of Brønsted acid sites in hierarchical ZSM-5 particles. Catalysis Today, 2012, 198, 3-11.	2.2	58
180	In Situ Monitoring the Uptake of Moisture into Hybrid Perovskite Thin Films. Journal of Physical Chemistry Letters, 2018, 9, 2015-2021.	2.1	58

#	Article	IF	Citations
181	Markownikoff and anti-Markownikoff hydroamination with palladium catalysts immobilized in thin films of silica supported ionic liquids. Chemical Communications, 2006, , 2974-2976.	2.2	57
182	Platinum Nanoparticles on Gallium Nitride Surfaces: Effect of Semiconductor Doping on Nanoparticle Reactivity. Journal of the American Chemical Society, 2012, 134, 12528-12535.	6.6	57
183	Following Solidâ€Acidâ€Catalyzed Reactions by MAS NMR Spectroscopy in Liquid Phase—Zeoliteâ€Catalyzed Conversion of Cyclohexanol in Water. Angewandte Chemie - International Edition, 2014, 53, 479-482.	7.2	57
184	On the Role of Product Isomerization for Shape Selective Toluene Methylation over HZSM5. Journal of Catalysis, 1994, 147, 199-206.	3.1	56
185	Title is missing!. Catalysis Letters, 2000, 70, 109-116.	1.4	56
186	Surface Processes during Sorption of Aromatic Molecules on Medium Pore Zeolitesâ€. Journal of Physical Chemistry B, 2005, 109, 2254-2261.	1.2	56
187	Mechanism of Phenol Alkylation in Zeolite H-BEA Using In Situ Solid-State NMR Spectroscopy. Journal of the American Chemical Society, 2017, 139, 9178-9185.	6.6	56
188	On the enhanced para-selectivity of HZSM-5 modified by antimony oxide. Journal of Catalysis, 2003, 219, 310-319.	3.1	55
189	Formation Mechanism of the First Carbon–Carbon Bond and the First Olefin in the Methanol Conversion into Hydrocarbons. Angewandte Chemie, 2016, 128, 5817-5820.	1.6	55
190	Stability of Zeolites in Aqueous Phase Reactions. Chemistry of Materials, 2017, 29, 7255-7262.	3.2	55
191	Impact of pH on Aqueous-Phase Phenol Hydrogenation Catalyzed by Carbon-Supported Pt and Rh. ACS Catalysis, 2019, 9, 1120-1128.	5.5	55
192	Production and reactions of xylenes over H-ZSM5. Journal of Molecular Catalysis, 1991, 64, 23-39.	1.2	54
193	l.r. spectroscopy of single zeolite crystals. Part 1: Thermal decomposition of the template in MFI-type materials. Zeolites, 1991, 11, 454-459.	0.9	54
194	Activity and selectivity of NiPt/SiO2 catalysts for hydrogenation of crotonaldehyde. Journal of Molecular Catalysis, 1992, 75, 71-79.	1.2	54
195	Oxidative Dehydrogenation of Ethane on Dynamically Rearranging Supported Chloride Catalysts. Journal of the American Chemical Society, 2014, 136, 12691-12701.	6.6	54
196	Environment of Metal–O–Fe Bonds Enabling High Activity in CO ₂ Reduction on Single Metal Atoms and on Supported Nanoparticles. Journal of the American Chemical Society, 2021, 143, 5540-5549.	6.6	54
197	Control of Acidâ^'Base Properties of New Nanocomposite Derivatives of MCM-36 by Mixed Oxide Pillaring. Chemistry of Materials, 2004, 16, 724-730.	3.2	53
198	Controlling Hydrodeoxygenation of Stearic Acid to <i>n</i> â€Heptadecane and <i>n</i> â€Octadecane by Adjusting the Chemical Properties of Ni/SiO ₂ â€"ZrO ₂ Catalyst. ChemCatChem, 2017, 9, 195-203.	1.8	53

#	Article	IF	CITATIONS
199	Electrochemically Tunable Protonâ€Coupled Electron Transfer in Pdâ€Catalyzed Benzaldehyde Hydrogenation. Angewandte Chemie - International Edition, 2020, 59, 1501-1505.	7.2	53
200	The influence of acidity on zeolite H-BEA catalyzed isobutane/n-butene alkylation. Microporous and Mesoporous Materials, 1998, 22, 379-388.	2.2	52
201	Strong BrÃ,nsted Acidity in Amorphous Silicaâ^'Aluminas. Journal of Physical Chemistry C, 2007, 111, 12075-12079.	1.5	52
202	Alkylation of toluene with methanol over alkali exchanged ZSM-5. Applied Catalysis, 1991, 68, 277-284.	1.1	51
203	The importance of acid site locations for n-butene skeletal isomerization on ferrierite. Journal of Molecular Catalysis A, 2000, 162, 147-157.	4.8	51
204	New Strategy for Chromium Substitution and Crystal Morphology ControlSynthesis and Characteristics of CrAPO-5. Chemistry of Materials, 2001, 13, 4447-4456.	3.2	51
205	Selective Hydrolysis of Diphenyl Ether in Supercritical Water Catalyzed by Alkaline Carbonates. ChemCatChem, 2010, 2, 1407-1410.	1.8	51
206	Selective poisoning of the direct denitrogenation route in o-propylaniline HDN by DBT on Mo and NiMo/ \hat{l}^3 -Al2O3 sulfide catalysts. Journal of Catalysis, 2011, 281, 325-338.	3.1	51
207	Tailoring nanoscopic confines to maximize catalytic activity of hydronium ions. Nature Communications, 2017, 8, 15442.	5.8	51
208	Synthesis of new MCM-36 derivatives pillared with alumina or magnesia–alumina. Journal of Materials Chemistry, 2002, 12, 369-373.	6.7	50
209	Oxidative conversion of propane over lithium-promoted magnesia catalyst II. Active site characterization and hydrocarbon activation. Journal of Catalysis, 2003, 218, 307-314.	3.1	50
210	Chemistry and Technology of Isobutane/Alkene Alkylation Catalyzed by Liquid and Solid Acids. Advances in Catalysis, 2004, , 229-295.	0.1	50
211	Role of the Surface Modification on the Transport of Hexane Isomers in ZSM-5. Journal of Physical Chemistry C, 2011, 115, 1171-1179.	1.5	50
212	Enhancing shape selectivity without loss of activity – novel mesostructured ZSM5 catalysts for methylation of toluene to p-xylene. Chemical Communications, 2013, 49, 10584.	2.2	50
213	Impact of Aqueous Medium on Zeolite Framework Integrity. Chemistry of Materials, 2015, 27, 3533-3545.	3.2	50
214	Dimerization of Linear Butenes on Zeolite-Supported Ni ²⁺ . ACS Catalysis, 2019, 9, 315-324.	5.5	50
215	Synthesis and characterization of mesoporic materials containing highly dispersed cobalt. Microporous Materials, 1996, 6, 13-17.	1.6	49
216	Chain Length Effects of Linear Alkanes in Zeolite Ferrierite. 1. Sorption and 13C NMR Experiments 1. Journal of Physical Chemistry B, 1998, 102, 3945-3951.	1.2	49

#	Article	IF	Citations
217	Ir-based additives for NO reduction and CO oxidation in the FCC regenerator: Evaluation, characterization and mechanistic studies. Applied Catalysis B: Environmental, 2005, 60, 277-288.	10.8	49
218	Hydrodeoxygenation of fatty acid esters catalyzed by Ni on nano-sized MFI type zeolites. Catalysis Science and Technology, 2016, 6, 7976-7984.	2.1	49
219	Mechanistic insights into aqueous phase propanol dehydration in Hâ€ZSMâ€5 zeolite. AICHE Journal, 2017, 63, 172-184.	1.8	49
220	Carbon-supported Pt during aqueous phenol hydrogenation with and without applied electrical potential: X-ray absorption and theoretical studies of structure and adsorbates. Journal of Catalysis, 2018, 368, 8-19.	3.1	49
221	Critical role of solvent-modulated hydrogen-binding strength in the catalytic hydrogenation of benzaldehyde on palladium. Nature Catalysis, 2021, 4, 976-985.	16.1	49
222	Energetic and entropic contributions controlling the sorption of benzene in zeolites. Microporous and Mesoporous Materials, 2006, 90, 284-292.	2.2	48
223	Preparation and characterization of silica-supported Ni/Pt catalysts. Journal of Catalysis, 1990, 122, 406-414.	3.1	47
224	Hydroamination of 6-aminohex-1-yne over zinc based homogeneous and zeolite catalysts. Microporous and Mesoporous Materials, 2001, 48, 285-291.	2.2	47
225	Tailoring Raney-catalysts for the selective hydrogenation of butyronitrile to n-butylamine. Journal of Catalysis, 2007, 245, 237-248.	3.1	47
226	Oxidative Dehydrogenation of Light Alkanes on Supported Molten Alkali Metal Chloride Catalysts. Topics in Catalysis, 2008, 50, 156-167.	1.3	47
227	Investigations into the mechanism of the liquid-phase hydrogenation of nitriles over Raney-Co catalysts. Journal of Catalysis, 2008, 253, 167-179.	3.1	47
228	Sailing into uncharted waters: recent advances in the in situ monitoring of catalytic processes in aqueous environments. Catalysis Science and Technology, 2015, 5, 3035-3060.	2.1	47
229	Hydrolysis of zeolite framework aluminum and its impact on acid catalyzed alkane reactions. Journal of Catalysis, 2018, 365, 359-366.	3.1	47
230	Hydrodeoxygenation of phenolic compounds to cycloalkanes over supported nickel phosphides. Catalysis Today, 2019, 319, 48-56.	2.2	47
231	Structure Sensitivity in Hydrogenation Reactions on Pt/C in Aqueousâ€phase. ChemCatChem, 2019, 11, 575-582.	1.8	47
232	Activity and selectivity of PtNi/TiO2 catalysts for hydrogenation of crotonaldehyde. Catalysis Letters, 1993, 18, 99-109.	1.4	46
233	Sorption and Ordering of Dibranched Alkanes on Medium-Pore Zeolites Ferrierite and TON. Journal of Physical Chemistry B, 2000, 104, 5715-5723.	1.2	46
234	Palladium catalysts immobilized in thin films of ionic liquid for the direct addition of aniline to styrene. Journal of Molecular Catalysis A, 2008, 279, 187-199.	4.8	46

#	Article	IF	Citations
235	Ring opening of 1,2,3,4-tetrahydroquinoline and decahydroquinoline on MoS2/γ-Al2O3 and Ni–MoS2/I³-Al2O3. Journal of Catalysis, 2012, 295, 155-168.	3.1	46
236	Enhancement of Dehydrogenation and Hydride Transfer by La ³⁺ Cations in Zeolites during Acid Catalyzed Alkane Reactions. ACS Catalysis, 2014, 4, 1743-1752.	5.5	46
237	Sealed rotors for in situ high temperature high pressure MAS NMR. Chemical Communications, 2015, 51, 13458-13461.	2.2	46
238	Operando XAFS Studies on Rh(CAAC)-Catalyzed Arene Hydrogenation. ACS Catalysis, 2019, 9, 4106-4114.	5.5	46
239	Surface chemistry of H-ZSM5 studied by time-resolved IR spectroscopy. Journal of Molecular Catalysis, 1989, 51, 309-327.	1.2	45
240	Hydrogen bonding of sulfur containing compounds adsorbed on zeolite HZSM5. Journal of Molecular Structure, 1993, 293, 235-238.	1.8	45
241	Oxidative conversion of light alkanes to olefins over alkali promoted oxide catalysts. Applied Catalysis A: General, 2002, 227, 287-297.	2.2	45
242	Atomic Layer Deposition in a Metal–Organic Framework: Synthesis, Characterization, and Performance of a Solid Acid. Chemistry of Materials, 2017, 29, 1058-1068.	3.2	45
243	Interaction between sulfated zirconia and alkanes: prerequisites for active sitesâ€"formation and stability of reaction intermediates. Journal of Catalysis, 2005, 230, 214-225.	3.1	44
244	Mechanism of butane skeletal isomerization on sulfated zirconia. Journal of Catalysis, 2005, 232, 456-466.	3.1	44
245	Stages of aging and deactivation of zeolite LaX in isobutane/2-butene alkylation. Journal of Catalysis, 2007, 246, 315-324.	3.1	44
246	Modified Lanthanum Catalysts for Oxidative Chlorination of Methane. Topics in Catalysis, 2009, 52, 1220-1231.	1.3	44
247	Carbon–Carbon Bond Scission Pathways in the Deoxygenation of Fatty Acids on Transition-Metal Sulfides. ACS Catalysis, 2017, 7, 1068-1076.	5.5	44
248	Evidence for strong acidity of the molecular sieve cloverite. Nature, 1993, 365, 429-431.	13.7	43
249	Zinc-ion exchanged zeolites for the intramolecular hydroamination of 6-aminohex-1-yne. Chemical Communications, 2000, , 1753-1754.	2.2	43
250	Continuous hydroamination in a liquid–liquid two-phase systemElectronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b1/b111630d/. Chemical Communications, 2002, , 906-907.	2.2	43
251	Structure-activity relations for Ni-containing zeolites during NO reduction I. Influence of acid sites. Journal of Catalysis, 2003, 218, 348-353.	3.1	43
252	Hydrogenation of tetralin on silica–alumina-supported Pt catalysts II. Influence of the support on catalytic activity. Journal of Catalysis, 2007, 251, 497-506.	3.1	43

#	Article	IF	Citations
253	Synthesis of Methanethiol from Carbonyl Sulfide and Carbon Disulfide on (Co)K-Promoted Sulfide Mo/SiO ₂ Catalysts. ACS Catalysis, 2011, 1, 1595-1603.	5.5	43
254	State of Supported Pd during Catalysis in Water. Journal of Physical Chemistry C, 2013, 117, 17603-17612.	1.5	43
255	Effect of reaction conditions on the hydrogenolysis of polypropylene and polyethylene into gas and liquid alkanes. Reaction Chemistry and Engineering, 2022, 7, 844-854.	1.9	43
256	Improving the Stability of H–Mordenite forn-Butane Isomerization. Journal of Catalysis, 1997, 168, 292-300.	3.1	42
257	On the role of strength and location of Brønsted acid sites for ethylamine synthesis on mordenite catalysts. Applied Catalysis A: General, 2000, 194-195, 319-332.	2.2	42
258	Structure-activity relations for Ni-containing zeolites during NO reductionII. Role of the chemical state of Ni. Journal of Catalysis, 2003, 218, 375-385.	3.1	42
259	Novel Model Explaining Toluene Diffusion in HZSM-5 after Surface Modification. Journal of Physical Chemistry B, 2004, 108, 1337-1343.	1.2	42
260	Catalytic methylation of phenol on MgO – Surface chemistry and mechanism. Journal of Catalysis, 2010, 269, 340-350.	3.1	42
261	Selectivity Enhancement in Methylamine Synthesis via Postsynthesis Modification of Brønsted Acidic Mordenite. Journal of Catalysis, 1996, 160, 299-308.	3.1	41
262	Oxidative Dehydrogenation of Ethane Over Novel Li/Dy/Mg Mixed Oxides: Structure–Activity Study. Topics in Catalysis, 2003, 23, 151-158.	1.3	41
263	Elementary Reactions and Intermediate Species Formed during the Oxidative Regeneration of Spent Fluid Catalytic Cracking Catalysts. Industrial & Engineering Chemistry Research, 2004, 43, 3097-3104.	1.8	41
264	Nanoporous Glass as a Model System for a Consistency Check of the Different Techniques of Diffusion Measurement. ChemPhysChem, 2011, 12, 1130-1134.	1.0	41
265	Formation of Oxygen Radical Sites on MoVNbTeOx by Cooperative Electron Redistribution. Journal of the American Chemical Society, 2017, 139, 12342-12345.	6.6	41
266	On the reaction mechanism for methane partial oxidation over yttria/zirconia. Catalysis Today, 1998, 46, 91-97.	2.2	40
267	Isomerization of Linear Butenes to iso-Butene over Medium Pore Zeolites. Journal of Catalysis, 2001, 197, 68-80.	3.1	40
268	Characterization of Crâ^'MCM-41 and Al, Crâ^'MCM-41 Mesoporous Catalysts for Gas-Phase Oxidative Dehydrogenation of Cyclohexane. Journal of Physical Chemistry C, 2007, 111, 1830-1839.	1.5	40
269	Synthesis of methyl mercaptan from carbonyl sulfide over sulfide K2MoO4/SiO2. Journal of Catalysis, 2011, 280, 264-273.	3.1	40
270	Elementary steps and reaction pathways in the aqueous phase alkylation of phenol with ethanol. Journal of Catalysis, 2017, 352, 329-336.	3.1	40

#	Article	IF	CITATIONS
271	Effects of Local Water Concentrations on Cyclohexanol Dehydration in H-BEA Zeolites. Journal of Physical Chemistry C, 2019, 123, 25255-25266.	1.5	40
272	Promotion of protolytic pentane conversion on H-MFI zeolite by proximity of extra-framework aluminum oxide and Brønsted acid sites. Journal of Catalysis, 2019, 370, 424-433.	3.1	40
273	Quantifying Adsorption of Organic Molecules on Platinum in Aqueous Phase by Hydrogen Site Blocking and in Situ X-ray Absorption Spectroscopy. ACS Catalysis, 2019, 9, 6869-6881.	5 . 5	40
274	The Critical Role of Reductive Steps in the Nickelâ€Catalyzed Hydrogenolysis and Hydrolysis of Aryl Ether Câ^'O Bonds. Angewandte Chemie - International Edition, 2020, 59, 1445-1449.	7.2	40
275	Hydrogen Bonding Enhances the Electrochemical Hydrogenation of Benzaldehyde in the Aqueous Phase. Angewandte Chemie - International Edition, 2021, 60, 290-296.	7.2	40
276	The influence of extraframework aluminum on H-FAU catalyzed cracking of light alkanes. Applied Catalysis A: General, 1996, 146, 119-129.	2.2	39
277	Identification of reaction intermediates during hydrogenation of CD3CN on Raney-Co. Journal of Catalysis, 2009, 263, 34-41.	3.1	39
278	Enhancing hydrogenation activity of Ni-Mo sulfide hydrodesulfurization catalysts. Science Advances, 2020, 6, eaax5331.	4.7	39
279	Dehydroisomerization of n-Butane over Pt–ZSM5 (I): Effect of the Metal Loading and Acid Site Concentration. Journal of Catalysis, 1999, 186, 188-200.	3.1	38
280	On the surface reactions during NO reduction with propene and propane on Ni-exchanged mordenite. Applied Catalysis B: Environmental, 2003, 46, 189-202.	10.8	38
281	LaCl3-based catalysts for oxidative chlorination of CH4. Topics in Catalysis, 2006, 38, 211-220.	1.3	38
282	Characterization of Fe-Exchanged BEA Zeolite Under NH ₃ Selective Catalytic Reduction Conditions. Journal of Physical Chemistry C, 2013, 117, 986-993.	1.5	38
283	Impact of Ni promotion on the hydrogenation pathways of phenanthrene on MoS2/ \hat{I}^3 -Al2O3. Journal of Catalysis, 2017, 352, 171-181.	3.1	38
284	Hydrogen/Deuterium Exchange duringn-Butane Conversion on H-ZSM-5. Journal of Catalysis, 1996, 160, 183-189.	3.1	37
285	Sulfur-Tolerant Pt-Supported Catalysts for Benzene Hydrogenation. Journal of Catalysis, 2001, 203, 434-442.	3.1	37
286	Selective catalytic reduction of NOx to nitrogen over Co-Pt/ZSM-5. Applied Catalysis B: Environmental, 2001, 29, 69-81.	10.8	37
287	Surface chemistry and kinetics of the hydrolysis of isocyanic acid on anatase. Applied Catalysis B: Environmental, 2007, 70, 91-99.	10.8	37
288	Combined TPRx, in situ GISAXS and GIXAS studies of model semiconductor-supported platinum catalysts in the hydrogenation of ethene. Physical Chemistry Chemical Physics, 2010, 12, 5585.	1.3	37

#	Article	IF	CITATIONS
289	²⁷ Al MAS NMR Studies of HBEA Zeolite at Low to High Magnetic Fields. Journal of Physical Chemistry C, 2017, 121, 12849-12854.	1.5	37
290	Diffusion pathways of benzene, toluene and p-xylene in MFI. Microporous and Mesoporous Materials, 2009, 125, 3-10.	2.2	36
291	Reversibility of the Modification of HZSM-5 with Phosphate Anions. Journal of Physical Chemistry C, 2014, 118, 6122-6131.	1.5	36
292	Understanding Ni Promotion of MoS $<$ sub $>2sub>/\hat{l}^3\hat{a}\inAl<sub>2sub>0<sub>3sub> and its Implications for the Hydrogenation of Phenanthrene. ChemCatChem, 2015, 7, 4118-4130.$	1.8	36
293	Pathways for H ₂ Activation on (Ni)-MoS ₂ Catalysts. Journal of Physical Chemistry Letters, 2015, 6, 2929-2932.	2.1	36
294	Nitrogen Modified Carbon Nano-Materials as Stable Catalysts for Phosgene Synthesis. ACS Catalysis, 2016, 6, 5843-5855.	5.5	36
295	Kinetic Coupling of Water Splitting and Photoreforming on SrTiO ₃ -Based Photocatalysts. ACS Catalysis, 2018, 8, 2902-2913.	5.5	36
296	Aqueous Phase Hydrodeoxygenation of Phenol over Ni ₃ P-CePO ₄ Catalysts. Industrial & Description of Phenol over Ni ₃ P-CePO ₄ Catalysts.	1.8	36
297	Adsorption and surface chemistry of light thiols on Na-ZSM5 and H-ZSM5. The Journal of Physical Chemistry, 1991, 95, 10729-10736.	2.9	35
298	Cracking of n-hexane and n-butane over SAPO5, MgAPO5 and CoAPO5. Journal of Molecular Catalysis, 1994, 87, 263-273.	1.2	35
299	On the Nature of Nitrogen-Containing Carbonaceous Deposits on Coked Fluid Catalytic Cracking Catalysts. Industrial & Deposits on Coked Fluid Catalytic Cracking Catalysts. Industrial & Deposits on Coked Fluid Catalytic Cracking Catalysts. Industrial & Deposits on Coked Fluid Catalytic Cracking Catalysts.	1.8	35
300	Impact of supported ionic liquids on supported Pt catalysts. Green Chemistry, 2009, 11, 656.	4.6	35
301	Simultaneous hydrodenitrogenation and hydrodesulfurization on unsupported Ni-Mo-W sulfides. Catalysis Today, 2017, 297, 344-355.	2.2	35
302	Exceptional Fluorocarbon Uptake with Mesoporous Metal–Organic Frameworks for Adsorption-Based Cooling Systems. ACS Applied Energy Materials, 2018, 1, 5853-5858.	2.5	35
303	Reactions of ethanol over HZSM-5. Journal of Molecular Catalysis, 1990, 62, 289-295.	1.2	34
304	Design and Application of a New Reactor for in Situ in	1.2	34
305	Preparation of mixed Al2O3/SiO2 thin films supported on Mo(100). Surface Science, 1994, 318, 97-103.	0.8	34
306	Spectroscopic Characterization of Cobalt-Containing Mesoporous Materials. Journal of Physical Chemistry B, 2006, 110, 5386-5394.	1.2	34

#	Article	IF	Citations
307	Influence of Postsynthetic Surface Modification on Shape Selective Transport of Aromatic Molecules in HZSM-5. Journal of Physical Chemistry C, 2009, 113, 15355-15363.	1.5	34
308	Sorption and diffusion parameters from vacuum-TPD of ammonia on H-ZSM-5. Chemical Engineering Science, 2013, 89, 40-48.	1.9	34
309	Overcoming the Rate-Limiting Reaction during Photoreforming of Sugar Aldoses for H ₂ -Generation. ACS Catalysis, 2017, 7, 3236-3244.	5. 5	34
310	Characterization and removal of extra lattice species in faujasites. Microporous Materials, 1995, 3, 457-465.	1.6	33
311	Tailoring p-xylene selectivity in toluene methylation on medium pore-size zeolites. Microporous and Mesoporous Materials, 2015, 210, 52-59.	2.2	33
312	Sorption of alkanes on novel pillared zeolites; comparison between MCM-22 and MCM-36. Recueil Des Travaux Chimiques Des Pays-Bas, 1996, 115, 531-535.	0.0	32
313	Orientation of Alkyl-Substituted Aromatic Molecules during Sorption in the Pores of H/ZSM-5 Zeolites. Journal of Physical Chemistry C, 2007, 111, 3973-3980.	1.5	32
314	Oxidative dehydrogenation of ethane over Dy2O3/MgO supported LiCl containing eutectic chloride catalysts. Catalysis Today, 2007, 123, 113-121.	2.2	32
315	Kinetics and mechanism of the oxidative dehydrogenation of ethane over Li/Dy/Mg/O/(Cl) mixed oxide catalysts. Topics in Catalysis, 2007, 46, 101-110.	1.3	32
316	Influence of Potassium on the Synthesis of Methanethiol from Carbonyl Sulfide on Sulfided Mo/Al ₂ O ₃ Catalyst. ChemCatChem, 2011, 3, 1480-1490.	1.8	32
317	On the Role of the Vanadium Distribution in MoVTeNbO x Mixed Oxides for the Selective Catalytic Oxidation of Propane. Topics in Catalysis, 2011, 54, 639-649.	1.3	32
318	Enabling Overall Water Splitting on Photocatalysts by CO-Covered Noble Metal Co-catalysts. Journal of Physical Chemistry Letters, 2016, 7, 4358-4362.	2.1	32
319	Active Sites on Nickelâ€Promoted Transitionâ€Metal Sulfides That Catalyze Hydrogenation of Aromatic Compounds. Angewandte Chemie - International Edition, 2018, 57, 14555-14559.	7.2	32
320	Reduction of nitric oxide by propene and propane on Ni-exchanged mordenite. Applied Catalysis B: Environmental, 2003, 43, 105-115.	10.8	31
321	Water–gas shift catalysts based on ionic liquid mediated supported Cu nanoparticles. Journal of Catalysis, 2010, 276, 280-291.	3.1	31
322	Role of Spatial Constraints of BrÃ, nsted Acid Sites for Adsorption and Surface Reactions of Linear Pentenes. Journal of the American Chemical Society, 2017, 139, 8646-8652.	6.6	31
323	Importance of Methane Chemical Potential for Its Conversion to Methanol on Cuâ€Exchanged Mordenite. Chemistry - A European Journal, 2020, 26, 7563-7567.	1.7	31
324	Tailoring silica–alumina-supported Pt–Pd as poison-tolerant catalyst for aromatics hydrogenation. Journal of Catalysis, 2013, 304, 135-148.	3.1	31

#	Article	IF	CITATIONS
325	Preparation and Characterization of Polymer-Stabilized Rhodium Sols. I. Factors Affecting Particle Size. Journal of Physical Chemistry B, 1999, 103, 1651-1659.	1.2	30
326	Effect of Rh-based additives on NO and CO formed during regeneration of spent FCC catalyst. Applied Catalysis B: Environmental, 2004, 47, 165-175.	10.8	30
327	Influence of the activation temperature on the physicochemical properties and catalytic activity of La-X zeolites for isobutane/cis-2-butene alkylation. Microporous and Mesoporous Materials, 2006, 97, 49-57.	2.2	30
328	Correlations between XPS binding energies and composition of aluminasilicate and phosphate molecular sieves. Zeolites, 1992, 12, 81-85.	0.9	29
329	Catalytic hydrolysis of s-triazine compounds over Al2O3. Catalysis Today, 1996, 27, 167-173.	2.2	29
330	In Situ IR Study of the Nature and Mobility of Sorbed Species on H-FER during But-1-ene Isomerization. Journal of Catalysis, 2002, 211, 366-378.	3.1	29
331	Novel hydroamination reactions in a liquid–liquid two-phase catalytic system. Green Chemistry, 2003, 5, 227.	4.6	29
332	Novel derivatives of MCM-36 as catalysts for the reduction of nitrogen oxides from FCC regenerator flue gas streams. Journal of Catalysis, 2004, 227, 117-129.	3.1	29
333	Hydroamination of 1,3-cyclohexadiene with aryl amines catalyzed with acidic form zeolites. Journal of Catalysis, 2006, 239, 42-50.	3.1	29
334	Surface Transport Processes and Sticking Probability of Aromatic Molecules in HZSM-5. Journal of Physical Chemistry C, 2008, 112, 2538-2544.	1.5	29
335	Bimetallic Pt–Pd/silica–alumina hydrotreating catalysts. Part II: Structure–activity correlations in the hydrogenation of tetralin in the presence of dibenzothiophene and quinoline. Journal of Catalysis, 2012, 292, 13-25.	3.1	29
336	Single-Event Kinetic Model for 1-Pentene Cracking on ZSM-5. Industrial & Engineering Chemistry Research, 2015, 54, 11792-11803.	1.8	29
337	Elementary Steps of Faujasite Formation Followed by in Situ Spectroscopy. Chemistry of Materials, 2018, 30, 888-897.	3.2	29
338	Impact of structural defects and hydronium ion concentration on the stability of zeolite BEA in aqueous phase. Applied Catalysis B: Environmental, 2018, 237, 996-1002.	10.8	29
339	Highly Active and Selective Sites for Propane Dehydrogenation in Zeolite Ga-BEA. Journal of the American Chemical Society, 2022, 144, 12347-12356.	6.6	29
340	Variable temperature FTIR study on the surface acidity of variously treated sulfated zirconias. Catalysis Communications, 2007, 8, 865-870.	1.6	28
341	Phase formation and selective oxidation of propane over MoVTeNbOx catalysts with varying compositions. Applied Catalysis A: General, 2011, 391, 63-69.	2.2	28
342	Structure sensitivity of hydrogenolytic cleavage of endocyclic and exocyclic C–C bonds in methylcyclohexane over supported iridium particles. Journal of Catalysis, 2013, 297, 70-78.	3.1	28

#	Article	IF	CITATIONS
343	Structure of Co and Co oxide clusters in MCM-41. Catalysis Today, 1998, 39, 311-315.	2.2	27
344	On the elementary steps of acid zeolite catalyzed amination of light alcohols. Applied Catalysis A: General, 1999, 181, 245-255.	2.2	27
345	The Effect of the Pore Structure of Medium-Pore Zeolites on the Dehydroisomerization of n-Butane: A Comparison of Pt–FER, Pt–TON, and Pt–ZSM5. Journal of Catalysis, 2000, 190, 374-386.	3.1	27
346	Sulfate formation on SOx trapping materials studied by Cu and S K-edge XAFS. Physical Chemistry Chemical Physics, 2005, 7, 1283.	1.3	27
347	Catalytic Test Reactions for Probing the Acidity and Basicity of Zeolites. Molecular Sieves - Science and Technology, 2008, , 153-212.	0.2	27
348	Photoreforming of ethylene glycol over Rh/TiO2 and Rh/GaN:ZnO. Journal of Catalysis, 2016, 338, 68-81.	3.1	27
349	Palladiumâ€Catalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds. Angewandte Chemie - International Edition, 2018, 57, 3747-3751.	7.2	27
350	Synthesis of Intermediates and fine chemicals using molecular sieve catalysts. Studies in Surface Science and Catalysis, 1996, , 363-412.	1.5	26
351	Hexadecane Conversion in the Evaluation of Commercial Fluid Catalytic Cracking Catalysts. Industrial & Lamp; Engineering Chemistry Research, 1998, 37, 873-881.	1.8	26
352	Applied Molecular Simulations over FER-, TON-, and AEL-Type Zeolites. Journal of Catalysis, 2001, 203, 351-361.	3.1	26
353	Oxidative dehydrogenation and cracking of ethane and propane over LiDyMg mixed oxides. Topics in Catalysis, 2001, 15, 169-174.	1.3	26
354	Investigation of the Adsorption of Methanol on Alkali Metal Cation Exchanged Zeolite X by Inelastic Neutron Scattering. Journal of Physical Chemistry B, 2004, 108, 7902-7910.	1.2	26
355	Low-Temperature Activation of Branched Octane Isomers over Lanthanum-Exchanged Zeolite X Catalysts. Journal of Physical Chemistry C, 2007, 111, 210-218.	1.5	26
356	Active sites and reactive intermediates in the hydrogenolytic cleavage of C–C bonds in cyclohexane over supported iridium. Journal of Catalysis, 2012, 295, 133-145.	3.1	26
357	γâ€Al ₂ O ₃ ‣upported and Unsupported (Ni)MoS ₂ for the Hydrodenitrogenation of Quinoline in the Presence of Dibenzothiophene. ChemCatChem, 2014, 6, 485-499.	1.8	26
358	Differences in Mechanism and Rate of Zeolite-Catalyzed Cyclohexanol Dehydration in Apolar and Aqueous Phase. ACS Catalysis, 2021, 11, 2879-2888.	5.5	26
359	Acid-Base Properties of Al ₂ O ₃ /MgO Oxides. Zeitschrift Fur Physikalische Chemie, 1982, 129, 209-218.	1.4	25
360	Modelling aromatics in siliceous zeolites: a new forcefield from thermochemical studies. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3759-3768.	1.7	25

#	Article	IF	CITATIONS
361	In situ IR spectroscopy for developing catalysts and catalytic processes. Vibrational Spectroscopy, 1999, 19, 107-121.	1,2	25
362	Activation and isomerization of n-butane on sulfated zirconia model systems—an integrated study across the materials and pressure gaps. Physical Chemistry Chemical Physics, 2007, 9, 3600-3618.	1.3	25
363	Determination of the Redox Processes in FeBEA Catalysts in NH ₃ â^3SCR Reaction by Mössbauer and X-ray Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2011, 2, 950-955.	2.1	25
364	Selective Modification of the Acid–Base Properties of Ceria by Supported Au. Chemistry - A European Journal, 2011, 17, 7095-7104.	1.7	25
365	Bimetallic Pt–Pd/silica–alumina hydrotreating catalysts – Part I: Physicochemical characterization. Journal of Catalysis, 2012, 292, 1-12.	3.1	25
366	Synthesis of Methanethiol from CS ₂ on Niâ€; Coâ€; and Kâ€Doped MoS ₂ /SiO ₂ Catalysts. ChemCatChem, 2013, 5, 3249-3259.	1.8	25
367	On the enhanced catalytic activity of acid-treated, trimetallic Ni-Mo-W sulfides for quinoline hydrodenitrogenation. Journal of Catalysis, 2019, 380, 332-342.	3.1	25
368	Evaluation of commercial FCC catalysts for hydrocarbon conversion. Applied Catalysis A: General, 1998, 169, 315-329.	2.2	24
369	Adsorption and Polarization of Branched Alkanes on Hâ^'LaX. Journal of Physical Chemistry C, 2007, 111, 5454-5464.	1.5	24
370	Unique Dynamic Changes of Fe Cationic Species under NH ₃ -SCR Conditions. Journal of Physical Chemistry C, 2012, 116, 5846-5856.	1,5	24
371	Aqueous phase hydrogenation of phenol catalyzed by Pd and PdAg on ZrO2. Applied Catalysis A: General, 2017, 548, 128-135.	2.2	24
372	Acid-base properties of Al2O3/MgO oxides, II. Infrared study of adsorption of pyridine. Reaction Kinetics and Catalysis Letters, 1982, 20, 409-413.	0.6	23
373	Catalytic activity of SAPO5 for cracking of butane and hexane. Journal of the Chemical Society Faraday Transactions I, 1989, 85, 3879.	1.0	23
374	Formation of metallic particles during temperature-programmed reduction of silica-supported platinum and nickel chlorides. The Journal of Physical Chemistry, 1993, 97, 484-488.	2.9	23
375	Influence of the Chemical Composition upon Adsorption, Coadsorption, and Reactivity of Ammonia and Methanol on Alkali-Exchanged Zeolites. The Journal of Physical Chemistry, 1996, 100, 1852-1857.	2.9	23
376	Alkylation of isobutane with light olefins catalyzed by zeolite beta. Microporous and Mesoporous Materials, 2000, 35-36, 75-87.	2.2	23
377	Inelastic Neutron Scattering of Hydrogen and Butyronitrile Adsorbed on Raney-Co Catalysts. Catalysis Letters, 2004, 97, 155-162.	1.4	23
378	On the quantitative aspects of hydrolysis of isocyanic acid on TiO2. Catalysis Today, 2007, 127, 165-175.	2.2	23

#	Article	IF	Citations
379	Atomistic Engineering of Catalyst Precursors: Dynamic Reordering of PdAu Nanoparticles during Vinyl Acetate Synthesis Enhanced by Potassium Acetate. ACS Catalysis, 2015, 5, 5776-5786.	5.5	23
380	Bent Carbon Surface Moieties as Active Sites on Carbon Catalysts for Phosgene Synthesis. Angewandte Chemie - International Edition, 2016, 55, 1728-1732.	7.2	23
381	Methanol thiolation over Al2O3 and WS2 catalysts modified with cesium. Journal of Catalysis, 2017, 345, 308-318.	3.1	23
382	Enhanced Activity in Methane Dry Reforming by Carbon Dioxide Induced Metalâ€Oxide Interface Restructuring of Nickel/Zirconia. ChemCatChem, 2017, 9, 3809-3813.	1.8	23
383	Acetone on magnesia. An infrared and temperature programmed desorption study. Journal of the Chemical Society Faraday Transactions I, 1981, 77, 621.	1.0	22
384	IR Study of The Adsorption of Benzene on HZSM5. Studies in Surface Science and Catalysis, 1989, , 585-594.	1.5	22
385	New highly active catalysts in direct partial oxidation of methane to synthesis gas. Studies in Surface Science and Catalysis, 1997, 107, 403-408.	1.5	22
386	In Situ XANES Study of Pt/Mordenite during Benzene Hydrogenation in the Presence of Thiophene. Journal of Physical Chemistry B, 2000, 104, 11644-11649.	1.2	22
387	INS and IR and NMR Spectroscopic Study of C1â°'C4 Alcohols Adsorbed on Alkali Metal-Exchanged Zeolite X. Journal of Physical Chemistry B, 2004, 108, 15013-15026.	1.2	22
388	Kinetic modelling of the gas phase ethane and propane oxidative dehydrogenation. Catalysis Today, 2006, 112, 53-59.	2.2	22
389	Hydronium-lon-Catalyzed Elimination Pathways of Substituted Cyclohexanols in Zeolite H-ZSM5. ACS Catalysis, 2017, 7, 7822-7829.	5.5	22
390	Overcoming Thermodynamic Limitations in Dimethyl Carbonate Synthesis from Methanol and CO2. Catalysis Letters, 2018, 148, 1914-1919.	1.4	22
391	Rate enhancement by Cu in Ni _x Cu _{1â^'x} /ZrO ₂ bimetallic catalysts for hydrodeoxygenation of stearic acid. Catalysis Science and Technology, 2019, 9, 2620-2629.	2.1	22
392	Single-event kinetic model for methanol-to-olefins (MTO) over ZSM-5: Fundamental kinetics for the olefin co-feed reactivity. Chemical Engineering Journal, 2020, 402, 126023.	6.6	22
393	Dehydroisomerization of n-Butane over Pt–ZSM5. Journal of Catalysis, 2000, 190, 338-351.	3.1	21
394	Structureâ€"Activity Relationships of Nickelâ€"Hexaaluminates in Reforming Reactions Partâ€ll: Activity and Stability of Nanostructured Nickelâ€"Hexaaluminateâ€Based Catalysts in the Dry Reforming of Methane. ChemCatChem, 2014, 6, 1447-1452.	1.8	21
395	Activity of Cu–Al–Oxo Extra-Framework Clusters for Selective Methane Oxidation on Cu-Exchanged Zeolites. Jacs Au, 2021, 1, 1412-1421.	3.6	21
396	Site Densities, Rates, and Mechanism of Stable Ni/UiO-66 Ethylene Oligomerization Catalysts. Journal of the American Chemical Society, 2021, 143, 20274-20280.	6.6	21

#	Article	IF	CITATIONS
397	Direct Conversion of n-Butane to Isobutene over Pt–MCM22. Journal of Catalysis, 2000, 190, 396-405.	3.1	20
398	On the influence of pore geometry and acidity on the activity of parent and modified zeolites in the synthesis of methylenedianiline. Applied Catalysis A: General, 2011, 393, 189-194.	2.2	20
399	Impact of solvents and surfactants on the self-assembly of nanostructured amine functionalized silica spheres for CO2 capture. Journal of Energy Chemistry, 2016, 25, 327-335.	7.1	20
400	Impact of the Local Concentration of Hydronium Ions at Tungstate Surfaces for Acid-Catalyzed Alcohol Dehydration. Journal of the American Chemical Society, 2021, 143, 20133-20143.	6.6	20
401	Evaluation of commercial FCC catalysts for hydrocarbon conversion. Applied Catalysis A: General, 1998, 169, 299-313.	2.2	19
402	Hydroamination on homogeneous and heterogeneous catalysts: Kinetic study. AICHE Journal, 2003, 49, 214-224.	1.8	19
403	Improving bifunctional zeolite catalysts for alkane hydroisomerization via gas phase sulfation. Journal of Catalysis, 2006, 237, 337-348.	3.1	19
404	Single Step Preparation of Novel Hydrophobic Composite Films for Lowâ€≺i>k Applications. Advanced Functional Materials, 2008, 18, 3427-3433.	7.8	19
405	On the synthesis of LaCl3 catalysts for oxidative chlorination of methane. Applied Catalysis A: General, 2008, 350, 178-185.	2.2	19
406	Catalytic Consequences of Particle Size and Chloride Promotion in the Ring-Opening of Cyclopentane on Pt/Al ₂ O ₃ . ACS Catalysis, 2013, 3, 328-338.	5 . 5	19
407	Onionâ€Like Graphene Carbon Nanospheres as Stable Catalysts for Carbon Monoxide and Methane Chlorination. ChemCatChem, 2015, 7, 3036-3046.	1.8	19
408	Impact of alkali acetate promoters on the dynamic ordering of PdAu catalysts during vinyl acetate synthesis. Journal of Catalysis, 2016, 333, 71-77.	3.1	19
409	Towards Understanding Structure–Activity Relationships of Ni–Mo–W Sulfide Hydrotreating Catalysts. ChemCatChem, 2017, 9, 629-641.	1.8	19
410	A nitrogen-doped PtSn nanocatalyst supported on hollow silica spheres for acetic acid hydrogenation. Chemical Communications, 2018, 54, 8818-8821.	2.2	19
411	Intrinsic kinetic model for oxidative dehydrogenation of ethane over MoVTeNb mixed metal oxides: A mechanistic approach. Chemical Engineering Journal, 2020, 383, 123195.	6.6	19
412	Directing the Rateâ€Enhancement for Hydronium Ion Catalyzed Dehydration via Organization of Alkanols in Nanoscopic Confinements. Angewandte Chemie - International Edition, 2021, 60, 2304-2311.	7.2	19
413	Acetonitrile on silica–magnesia mixed oxides. Temperature-programmed desorption and infrared study. Journal of the Chemical Society Faraday Transactions I, 1982, 78, 2239.	1.0	18
414	The effect of impurities on chemisorption and activity of MgO-supported Rh. Journal of Catalysis, 1984, 88, 18-25.	3.1	18

#	Article	IF	CITATIONS
415	Type, stability, and acidity of hydroxyl groups of HNaK-erionites. Zeolites, 1989, 9, 224-230.	0.9	18
416	In Situ S K-Edge X-ray Absorption Spectroscopy for Understanding and Developing SOxStorage Catalysts. Journal of Physical Chemistry B, 2005, 109, 21842-21846.	1.2	18
417	Influence of calcination procedure on the catalytic property of sulfated zirconia. Catalysis Letters, 2007, 113, 34-40.	1.4	18
418	Reaction network and mechanism of the synthesis of methylenedianiline over dealuminated Y-type zeolites. Green Chemistry, 2011, 13, 149-155.	4.6	18
419	Materials with tunable low-k dielectric constant derived from functionalized octahedral silsesquioxanes and spherosilicates. Polymer, 2011, 52, 2492-2498.	1.8	18
420	Electrochemically Tunable Protonâ€Coupled Electron Transfer in Pdâ€Catalyzed Benzaldehyde Hydrogenation. Angewandte Chemie, 2020, 132, 1517-1521.	1.6	18
421	Surface chemistry of methanol and ammonia on HNaK erionites. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 2283.	1.7	17
422	Sorption and activation of hydrocarbons by molecular sieves. Current Opinion in Solid State and Materials Science, 1997, 2, 57-62.	5.6	17
423	On the trapping of SOx on CaO–Al2O3-based novel high capacity sorbents. Physical Chemistry Chemical Physics, 2006, 8, 1601.	1.3	17
424	Dynamic Self-Organization of Supported Pd/Au Catalysts during Vinyl Acetate Synthesis. Journal of Physical Chemistry C, 2013, $117,8161-8169$.	1.5	17
425	Distribution of Metal Cations in Niâ€Moâ€W Sulfide Catalysts. ChemCatChem, 2015, 7, 3692-3704.	1.8	17
426	Mechanistic differences between methanol and dimethyl ether in zeolite-catalyzed hydrocarbon synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	17
427	Surface species in the direct amination of methanol over Brønsted acidic mordenite catalysts. Research on Chemical Intermediates, 1997, 23, 25-40.	1.3	16
428	SOxStorage Materials under Leanâ^'Rich Cycling Conditions. Part I:Â Identification of Transient Species. Journal of Physical Chemistry B, 2006, 110, 10729-10737.	1.2	16
429	Hierarchically Structured Millimeter-Sized (Organo) Silica Spheres with a Macroporous Shell and a Meso/Microporous Core. Chemistry of Materials, 2011, 23, 2091-2099.	3.2	16
430	Dehydration of 1-Octadecanol over H-BEA: A Combined Experimental and Computational Study. ACS Catalysis, 2016, 6, 878-889.	5.5	16
431	Alkylation of lignin-derived aromatic oxygenates with cyclic alcohols on acidic zeolites. Applied Catalysis B: Environmental, 2021, 281, 119424.	10.8	16
432	Influence of Intracrystalline Ionic Strength in MFI Zeolites on Aqueous Phase Dehydration of Methylcyclohexanols. Angewandte Chemie - International Edition, 2021, 60, 24806-24810.	7.2	16

#	Article	IF	CITATIONS
433	Rate enhancement of phenol hydrogenation on Pt by hydronium ions in the aqueous phase. Journal of Catalysis, 2021, 404, 579-593.	3.1	16
434	Effects of adsorbed oxygen containing molecules on the XANES of Pt in supported Pt/SiO2 catalysts. Catalysis Letters, 1993, 21, 303-308.	1.4	15
435	Transition State and Diffusion Controlled Shape Selectivity in the Formation and Reaction of Xylenes. Studies in Surface Science and Catalysis, 1994, 83, 287-294.	1.5	15
436	Preparation and characterization of Pt particles in unidimensional microporous supports. Applied Catalysis A: General, 1998, 174, 155-162.	2.2	15
437	Zeolite Catalysts for the Selective Synthesis of Mono- and Diethylamines. Journal of Catalysis, 1998, 180, 258-269.	3.1	15
438	Kinetic processes during sorption and diffusion of aromatic molecules on medium pore zeolites studied by time resolved IR spectroscopy. Studies in Surface Science and Catalysis, 2002, 142, 1619-1626.	1.5	15
439	On the acid–base properties of Zn–Mg–Al mixed oxides. Applied Catalysis A: General, 2011, 399, 93-99.	2.2	15
440	Tailoring hierarchically structured SiO ₂ spheres for high pressure CO ₂ adsorption. Journal of Materials Chemistry A, 2014, 2, 13624-13634.	5.2	15
441	Cesium Induced Changes in the Acid–Base Properties of Metal Oxides and the Consequences for Methanol Thiolation. ACS Catalysis, 2019, 9, 9245-9252.	5.5	15
442	On the role of co-cations in nickel exchanged LTA zeolite for butene dimerization. Microporous and Mesoporous Materials, 2019, 284, 241-246.	2.2	15
443	Ni/CeO2 promoted Ru and Pt supported on FeCrAl gauze for cycling methane catalytic partial oxidationâ€"CPOX. Applied Catalysis B: Environmental, 2021, 286, 119849.	10.8	15
444	Acid–base properties of silica–alumina samples derived from NaX zeolites. Part 1.—Physical characterization and an infrared study of the adsorption of acetone. Journal of the Chemical Society Faraday Transactions I, 1984, 80, 1239.	1.0	14
445	Acid-base properties of silica-alumina oxides derived from NaX zeolites. Journal of Molecular Catalysis, 1985, 30, 353-359.	1.2	14
446	Acidâ€"base properties of silicaâ€"alumina oxides derived from NaX zeolites. II. Infrared and temperature-programmed desorption study of adsorption of pyridine. Journal of Colloid and Interface Science, 1985, 106, 215-221.	5.0	14
447	Surface Chemistry of Methanol on HZSM5. Studies in Surface Science and Catalysis, 1991, , 437-443.	1.5	14
448	Zeolite induced chemical selectivity during toluene alkylation. Studies in Surface Science and Catalysis, 1995, , 449-455.	1.5	14
449	IR microspectroscopic investigation of the acid sites in metal substituted AlPO4-5 molecular sieves Part 1.Sorption of benzene and strong bases. Physical Chemistry Chemical Physics, 1999, 1, 571-578.	1.3	14
450	Oxidative Reforming of <i>n</i> -Butane Triggered by Spontaneous Oxidation of CeO _{2â°'<i>x</i>} at Ambient Temperature. Chemistry of Materials, 2008, 20, 4176-4178.	3.2	14

#	Article	IF	CITATIONS
451	Glucose―and Celluloseâ€Derived Ni/Câ€SO ₃ H Catalysts for Liquid Phase Phenol Hydrodeoxygenation. Chemistry - A European Journal, 2015, 21, 1567-1577.	1.7	14
452	State of Supported Nickel Nanoparticles during Catalysis in Aqueous Media. Chemistry - A European Journal, 2015, 21, 16541-16546.	1.7	14
453	On the role of the alkali cations on methanol thiolation. Catalysis Science and Technology, 2017, 7, 4437-4443.	2.1	14
454	The role of weak Lewis acid sites for methanol thiolation. Catalysis Science and Technology, 2019, 9, 509-516.	2.1	14
455	Towards understanding and predicting the hydronium ion catalyzed dehydration of cyclic-primary, secondary and tertiary alcohols. Journal of Catalysis, 2020, 390, 237-243.	3.1	14
456	Strength, Type and Catalytic Activity of Acid Sites in ZSM5 Zeolites. Zeitschrift Fur Physikalische Chemie, 1985, 146, 113-128.	1.4	13
457	Steric aspects in methylamine and dimethylether synthesis over acidic mordenites. Journal of Molecular Catalysis A, 1998, 134, 111-119.	4.8	13
458	Thiophene decomposition on Pt-supported zeolites: a TPD study. Applied Catalysis A: General, 2001, 218, 161-170.	2.2	13
459	SOxStorage Materials under Leanâ^'Rich Cycling ConditionsPart II:Â Influence of Pt, H2O, and Cycling Time. Journal of Physical Chemistry B, 2006, 110, 26024-26032.	1.2	13
460	Effect of chromium migration from metallic supports on the activity of diesel exhaust catalysts. Applied Catalysis B: Environmental, 2009, 89, 123-127.	10.8	13
461	Influence of Fluoride Anions on the Acid–Base Properties of Mg/Al Mixed Oxides. ACS Catalysis, 2011, 1, 1384-1393.	5.5	13
462	Influence of Hydronium Ions in Zeolites on Sorption. Angewandte Chemie, 2019, 131, 3488-3493.	1.6	13
463	Understanding Elementary Steps of Transport of Xylene Mixtures in ZSM-5 Zeolites. Journal of Physical Chemistry C, 2019, 123, 8092-8100.	1.5	13
464	Interaction of Hydrocarbons and Water With ZSM5. Studies in Surface Science and Catalysis, 1989, , 847-856.	1.5	12
465	Modification of HZSM-5 with trimethylphosphine. Zeolites, 1990, 10, 283-287.	0.9	12
466	Structure–Activity Correlations for TON, FER, and MOR in the Hydroisomerization of n-Butane. Journal of Catalysis, 2000, 195, 326-335.	3.1	12
467	The role of hydride transfer in zeolite catalyzed isobutane/butene alkylation. Studies in Surface Science and Catalysis, 2000, , 2561-2566.	1.5	12
468	Effect of Co and Ni on benzene hydrogenation and sulfur tolerance of Pt/H-MOR. Applied Catalysis A: General, 2003, 252, 283-293.	2.2	12

#	Article	IF	CITATIONS
469	Catalytically Active Sites of Supported Pt Catalysts for Hydrogenation of Tetralin in the Presence of Dibenzothiophene and Quinoline. Journal of Physical Chemistry C, 2010, 114, 14532-14541.	1.5	12
470	Aliphatic Hydrocarbons from Lignocellulose by Pyrolysis over Cesiumâ€Modified Amorphous Silica Alumina Catalysts. ChemCatChem, 2015, 7, 3386-3396.	1.8	12
471	Hydrogen Bonding Enhances the Electrochemical Hydrogenation of Benzaldehyde in the Aqueous Phase. Angewandte Chemie, 2021, 133, 294-300.	1.6	12
472	Electronic impact of Ni2P nanoparticle size on hydrogenation rates. Journal of Catalysis, 2021, 401, 129-136.	3.1	12
473	TiO2/ZnO mixed oxide catalysts, characterization by x-ray photoelectron and infrared-spectroscopy and reactions with propanol and butanol. Applied Catalysis, 1984, 12, 293-307.	1.1	11
474	Cracking of light alkanes over HNaK erionites. Journal of Catalysis, 1990, 125, 197-206.	3.1	11
475	Formation of sulfur surface species on a commercial NOx-storage reduction catalyst. Research on Chemical Intermediates, 2003, 29, 257-269.	1.3	11
476	9 A novel process for solid acid catalyzed isobutane/butene alkylation. Studies in Surface Science and Catalysis, 2003, 145, 67-72.	1.5	11
477	Effect of H2 in the synthesis of COS using liquid sulfur and CO or CO2 as reactants. Research on Chemical Intermediates, 2010, 36, 211-225.	1.3	11
478	Corrugated Ionic Liquid Surfaces with Embedded Polymer Stabilized Platinum Nanoparticles. Journal of Physical Chemistry C, 2010, 114, 13722-13729.	1.5	11
479	One step synthesis of organofunctionalized transition metal containing meso- and macroporous silica spheres. Microporous and Mesoporous Materials, 2011, 142, 464-472.	2.2	11
480	Prerequisites for kinetic modeling of TPD data of porous catalystsâ€"Exemplified by toluene/H-ZSM-5 system. Chemical Engineering Science, 2015, 137, 807-815.	1.9	11
481	Palladium atalyzed Reductive Insertion of Alcohols into Aryl Ether Bonds. Angewandte Chemie, 2018, 130, 3809-3813.	1.6	11
482	On the Mechanism of Catalytic Decarboxylation of Carboxylic Acids on Carbon-Supported Palladium Hydride. ACS Catalysis, 2021, 11, 14625-14634.	5.5	11
483	Speciation of Cu-Oxo Clusters in Ferrierite for Selective Oxidation of Methane to Methanol. Chemistry of Materials, 2022, 34, 4355-4363.	3.2	11
484	Cracking of Light Alkanes over Meapo-5 Molecular Sieves. Studies in Surface Science and Catalysis, 1991, 69, 373-380.	1.5	10
485	Deactivation and Coking of Hzsm5 Catalysts During Alkylation Reactions. Studies in Surface Science and Catalysis, 1994, 88, 241-248.	1.5	10
486	New insight into the mechanism of zeolite catalyzed nucleophilic amination Via In Situ infrared spectroscopy. Studies in Surface Science and Catalysis, 1997, , 591-598.	1.5	10

#	Article	IF	CITATIONS
487	Sorption and Surface Chemistry of Aminoethanol and Ethanediamine on H-Mordenites. Journal of Physical Chemistry B, 1997, 101, 561-568.	1.2	10
488	Mechanism of Carbon Deposit/Removal in Methane Dry Reforming on Supported Metal Catalysts. Studies in Surface Science and Catalysis, 2001, 136, 129-134.	1.5	10
489	Controlled one-step synthesis of hierarchically structured macroscopic silica spheres. Microporous and Mesoporous Materials, 2011, 146, 18-27.	2.2	10
490	A comparative study of diffusion of benzene/p-xylene mixtures in MFI particles, pellets and grown membranes. Catalysis Today, 2011, 168, 147-157.	2.2	10
491	Hydrogenation of tetralin over Pt catalysts supported on sulfated zirconia and amorphous silica alumina. Catalysis Science and Technology, 2013, 3, 2365.	2.1	10
492	Atomicâ€Scale Determination of Active Facets on the MoVTeNb Oxide M1 Phase and Their Intrinsic Catalytic Activity for Ethane Oxidative Dehydrogenation. Angewandte Chemie, 2016, 128, 9019-9023.	1.6	10
493	Zeoliteâ€Stabilized Di―and Tetranuclear Molybdenum Sulfide Clusters Form Stable Catalytic Hydrogenation Sites. Angewandte Chemie - International Edition, 2021, 60, 9301-9305.	7.2	10
494	Conversion of CO2 to methanol over bifunctional basic-metallic catalysts. Catalysis Communications, 2021, 159, 106347.	1.6	10
495	Chapter 2. C–H Activation of Alkanes in Selective Oxidation Reactions on Solid Oxide Catalysts. RSC Nanoscience and Nanotechnology, 2011, , 5-32.	0.2	10
496	Selective liquid phase oxidation of o-xylene with gaseous oxygen by transition metal containing polysiloxane initiator/catalyst systems. Journal of Catalysis, 2011, 283, 25-33.	3.1	9
497	Structure–Activity Relationships of Nickel–Hexaaluminates in Reforming Reactions Part l: Controlling Nickel Nanoparticle Growth and Phase Formation. ChemCatChem, 2014, 6, 1438-1446.	1.8	9
498	Diffusion of Mixtures of Light Alkanes and Benzene in Nano-Sized H-ZSM5. Journal of Physical Chemistry C, 2014, 118, 8424-8434.	1.5	9
499	Interaction of alkali acetates with silica supported PdAu. Catalysis Science and Technology, 2016, 6, 7203-7211.	2.1	9
500	Rate Enhancement of Acid-Catalyzed Alcohol Dehydration by Supramolecular Organic Capsules. ACS Catalysis, 2020, 10, 13371-13376.	5 . 5	9
501	Impact of Alkali and Alkaliâ€Earth Cations on Niâ€Catalyzed Dimerization of Butene. ChemCatChem, 2020, 12, 3705-3711.	1.8	9
502	Metal-organic framework supported single-site nickel catalysts for butene dimerization. Journal of Catalysis, 2022, 413, 176-183.	3.1	9
503	Apparent inconsistencies in acid-base behavior of ZnO. Reaction Kinetics and Catalysis Letters, 1980, 15, 21-25.	0.6	8
504	Acid behavior of SiO2â^'Al2O3 mixed oxides. Reaction Kinetics and Catalysis Letters, 1980, 14, 273-278.	0.6	8

#	Article	IF	CITATIONS
505	Acid-Base Properties of Al2O3/MgO Oxides. Zeitschrift Fur Physikalische Chemie, 1982, 131, 111-122.	1.4	8
506	2.6 Elementary Steps of Acid-Base Catalyzed Reactions in Molecular Sieves. Studies in Surface Science and Catalysis, 1994, 90, 147-156.	1.5	8
507	Picosecond infrared activation of methanol in acid zeolites. Chemical Physics Letters, 1997, 278, 213-219.	1.2	8
508	Selective catalytic reduction of NOx with propylene in the presence of oxygen over Co–Pt promoted H-MFI and HY. Catalysis Today, 2003, 84, 139-147.	2.2	8
509	Acid/baseâ€induced selectivity of molecular sieves in catalytic conversion of polar molecules. Recueil Des Travaux Chimiques Des Pays-Bas, 1996, 115, 157-166.	0.0	8
510	Polymerâ€Coated PtCo Nanoparticles Deposited on Diblock Copolymer Templates: Chemical Selectivity versus Topographical Effects. ChemPhysChem, 2014, 15, 2236-2239.	1.0	8
511	Mechanistic Pathways for Methylcyclohexane Hydrogenolysis over Supported Ir Catalysts. Journal of Physical Chemistry C, 2014, 118, 20948-20958.	1.5	8
512	Dynamic Phase Separation in Supported Pd–Au Catalysts. Journal of Physical Chemistry C, 2015, 119, 2471-2482.	1.5	8
513	New Lewis Acid Catalyzed Pathway to Carbon–Carbon Bonds from Methanol. ACS Central Science, 2015, 1, 350-351.	5.3	8
514	On the multifaceted roles of NiSx in hydrodearomatization reactions catalyzed by unsupported Ni-promoted MoS2. Journal of Catalysis, 2020, 391, 212-223.	3.1	8
515	Copper-Based Catalysts Confined in Carbon Nanocage Reactors for Condensed Ester Hydrogenation: Tuning Copper Species by Confined SiO ₂ and Methanol Resistance. ACS Sustainable Chemistry and Engineering, 2021, 9, 16270-16280.	3.2	8
516	Conversion of Acetone over Modified Y Zeolites, SAPO-5 and AlPO4-5. Zeitschrift Fur Physikalische Chemie, 1990, 168, 231-242.	1.4	7
517	On the Determination of the Location of Metal Clusters Supported on Molecular Sieves by X-ray Absorption Spectroscopy. Journal of Physical Chemistry B, 2000, 104, 9411-9415.	1.2	7
518	Hydroamination reactions catalysed with beta zeolites. Studies in Surface Science and Catalysis, 2004, 154, 2788-2794.	1.5	7
519	In Situ Measurement of Dissolved Hydrogen during the Liquid-Phase Hydrogenation of DinitrilesMethod and Case Study. Industrial & Engineering Chemistry Research, 2005, 44, 9770-9775.	1.8	7
520	On the interaction of light amines and alcohols with alkali metal exchanged X zeolites. Applied Catalysis A: General, 2006, 307, 108-117.	2.2	7
521	Co and Mn polysiloxanes as unique initiator–catalyst-systems for the selective liquid phase oxidation of o-xylene. Chemical Communications, 2011, 47, 3254.	2.2	7
522	Highly Selective Supported Alkali Chloride Catalysts for the Oxidative Dehydrogenation of Ethane. Topics in Catalysis, 2014, 57, 1236-1247.	1.3	7

#	Article	IF	CITATIONS
523	TiO ₂ /MgO-Mischkatalysatoren. Zeitschrift Fur Physikalische Chemie, 1979, 118, 209-220.	1.4	6
524	Acid-base properties of Al2O3/MgO oxides, V. Decomposition of diacetonealcohol. Reaction Kinetics and Catalysis Letters, 1983, 23, 365-370.	0.6	6
525	Deactivation of medium pore zeolite catalysts by butadiene during n-butene isomerization. Microporous and Mesoporous Materials, 2000, 38, 221-237.	2.2	6
526	Adsorption of SO2 on different metal impregnated zeolites. Studies in Surface Science and Catalysis, 2004, 154, 3003-3009.	1.5	6
527	Platinum nanoparticles deposited on wideâ €b andgap semiconductor surfaces for catalytic applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2010, 7, 411-414.	0.8	6
528	The Critical Role of Reductive Steps in the Nickelâ€Catalyzed Hydrogenolysis and Hydrolysis of Aryl Ether Câ^'O Bonds. Angewandte Chemie, 2020, 132, 1461-1465.	1.6	6
529	On the Promoting Effects of Te and Nb in the Activity and Selectivity of M1 MoV-Oxides for Ethane Oxidative Dehydrogenation. Topics in Catalysis, 2020, 63, 1754-1764.	1.3	6
530	Development of photochemical and electrochemical cells for <i>operando</i> X-ray absorption spectroscopy during photocatalytic and electrocatalytic reactions. Physical Chemistry Chemical Physics, 2020, 22, 18891-18901.	1.3	6
531	Toward quantification of active sites and site-specific activity for polyaromatics hydrogenation on transition metal sulfides. Journal of Catalysis, 2021, 403, 98-110.	3.1	6
532	Pellet Size-Induced Increase in Catalyst Stability and Yield in Zeolite-Catalyzed 2-Butene/Isobutane Alkylation. Industrial & Engineering Chemistry Research, 2022, 61, 330-338.	1.8	6
533	Enhanced catalytic performance of palladium nanoparticles in MOFs by channel engineering. Cell Reports Physical Science, 2022, 3, 100757.	2.8	6
534	Diffusion in Circularly Ordered Mesoporous Silica Fibers. Journal of Physical Chemistry C, 2011, 115, 8602-8612.	1.5	5
535	Formation of CO ₂ and Ethane from Propionyl over Platinum: A Density Functional Theory Study. ACS Catalysis, 2013, 3, 1730-1738.	5.5	5
536	Bent Carbon Surface Moieties as Active Sites on Carbon Catalysts for Phosgene Synthesis. Angewandte Chemie, 2016, 128, 1760-1764.	1.6	5
537	In situ FTIR microscopic investigation of the acid sites in cloverite. Studies in Surface Science and Catalysis, 1995, 97, 71-77.	1.5	4
538	Design of stable catalysts for methane â€" carbon dioxide reforming. Studies in Surface Science and Catalysis, 1998, 113, 187-191.	1.5	4
539	Transition state and diffusion controlled selectivity in skeletal isomerization of olefins. Studies in Surface Science and Catalysis, 2000, 130, 323-328.	1.5	4
540	Mechanistic routes of low temperature alkane activation over zeolites. Studies in Surface Science and Catalysis, 2000, , 2567-2572.	1.5	4

#	Article	IF	CITATIONS
541	On the interfacial mass transfer and the location of the chemical reaction in a fluid/fluid reacting system at elevated temperatures and pressures. Catalysis Today, 2001, 66, 335-344.	2.2	4
542	Adsorption of methanol on MCM-36 derivatives with strong acid and base sites. Studies in Surface Science and Catalysis, 2004, 154, 1598-1605.	1.5	4
543	Using Tomography for Exploring Complex Structured Emission Control Catalysts. Catalysis Letters, 2010, 134, 24-30.	1.4	4
544	Molecular Understanding of Sorption in Mesoscale Organized Zeolites with MFI Structure. Catalysis Letters, 2013, 143, 1116-1122.	1.4	4
545	Charge Transfer across the GaN/Pt Nanoparticle Interface in an Electrolyte. ChemCatChem, 2013, 5, 3224-3227.	1.8	4
546	Maximizing Active Site Concentrations at Ni-Substituted WS2 Edges for Hydrogenation of Aromatic Molecules. Journal of Physical Chemistry Letters, 2019, 10, 5617-5622.	2.1	4
547	Catalytic Decomposition of the Oleaginous Yeast <i>Cutaneotrichosporon Oleaginosus </i> and Subsequent Biocatalytic Conversion of Liberated Free Fatty Acids. ACS Sustainable Chemistry and Engineering, 2019, 7, 6531-6540.	3.2	4
548	Directing the Rateâ€Enhancement for Hydronium Ion Catalyzed Dehydration via Organization of Alkanols in Nanoscopic Confinements. Angewandte Chemie, 2021, 133, 2334-2341.	1.6	4
549	Laboratory-scale <i>iin situ</i> X-ray absorption spectroscopy of a palladium catalyst on a compact inverse-Compton scattering X-ray beamline. Journal of Analytical Atomic Spectrometry, 2021, 36, 2649-2659.	1.6	4
550	Oxidative ethane activation over oxide supported molten alkali metal chloride catalysts. Studies in Surface Science and Catalysis, 2004, 147, 673-678.	1.5	3
551	Tailoring Adsorption—Desorption Properties of Hydroamination Catalysts with Ionic Liquids. ACS Symposium Series, 2007, , 267-280.	0.5	3
552	Catalytic Depolymerization and Deoxygenation of Lignin. , 2013, , 289-320.		3
553	Importance of Methane Chemical Potential for Its Conversion to Methanol on Cuâ€exchanged Mordenite. Chemistry - A European Journal, 2020, 26, 7515-7515.	1.7	3
554	Influence of Acid Sites on Xylene Transport in MFI Type Zeolites. Journal of Physical Chemistry C, 2020, 124, 4134-4140.	1.5	3
555	Sinterâ€Resistant Platinum Catalyst Supported by Metal–Organic Framework. Angewandte Chemie, 2018, 130, 921-925.	1.6	3
556	A Career in Catalysis: Jean-Marie M. Basset. ACS Catalysis, 2022, 12, 4961-4977.	5.5	3
557	Controlling Reaction Routes in Nobleâ€Metalâ€Catalyzed Conversion of Aryl Ethers. Angewandte Chemie - International Edition, 2022, 61, .	7.2	3
558	Hydrogenation of carbon monoxide and ethene over Ni-doped supported Pt catalysts. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 2977.	1.7	2

#	Article	IF	CITATIONS
559	Catalytic hydrogenation by polymer stabilized rhodium. Studies in Surface Science and Catalysis, 1997, 108, 321-328.	1.5	2
560	Oxygen reactivity and formate structure in X zeolite. Studies in Surface Science and Catalysis, 2004, 154, 2745-2753.	1.5	2
561	Controlled Synthesis of Platinum Loaded Hierarchic Silica Spheres. Topics in Catalysis, 2012, 55, 800-810.	1.3	2
562	Inside Back Cover: Towards Quantitative Conversion of Microalgae Oil to Dieselâ€Range Alkanes with Bifunctional Catalysts (Angew. Chem. Int. Ed. 9/2012). Angewandte Chemie - International Edition, 2012, 51, 2253-2253.	7.2	2
563	Active Sites on Nickelâ€Promoted Transitionâ€Metal Sulfides That Catalyze Hydrogenation of Aromatic Compounds. Angewandte Chemie, 2018, 130, 14763-14767.	1.6	2
564	The Merits of In situ Environmental STEM for the Study of Complex Oxide Catalysts at Work. Microscopy and Microanalysis, 2018, 24, 238-239.	0.2	2
565	The Nature of Hydrogen Adsorption on Platinum in the Aqueous Phase. Angewandte Chemie, 2019, 131, 3565-3570.	1.6	2
566	Surface Effects Determining Transport in Binary Xylene Mixtures. Journal of Physical Chemistry C, 2020, 124, 26814-26820.	1.5	2
567	Magnesium–Aluminum Mixed Oxides as Basic Catalysts for the Synthesis of Methanethiol. Catalysis Letters, 2020, 150, 2304-2308.	1.4	2
568	Influence of Intracrystalline Ionic Strength in MFI Zeolites on Aqueous Phase Dehydration of Methylcyclohexanols. Angewandte Chemie, 0, , .	1.6	2
569	Controlling Reaction Routes in Nobleâ€Metalâ€Catalyzed Conversion of Aryl Ethers. Angewandte Chemie, 0, , .	1.6	2
570	Characterization of alkali exchanged ZSM5 by IR spectrosopy. Mikrochimica Acta, 1988, 95, 101-104.	2.5	1
571	Co-template impact on structure of AFI type crystals: An adsorption study. Studies in Surface Science and Catalysis, 2004, 154, 1872-1879.	1.5	1
572	Characterization of acidic properties of sulfated zeolite Beta. Studies in Surface Science and Catalysis, 2005, 158, 1763-1770.	1.5	1
573	The energetic and entropic contributions controlling the orientation of alkyl substituted aromatic molecules in the pores of MFI zeolites. Studies in Surface Science and Catalysis, 2007, 170, 926-933.	1.5	1
574	Surface chemistry of branched alkanes on lanthanum exchange zeolite X. Studies in Surface Science and Catalysis, 2007, , 1153-1160.	1.5	1
575	Revealing the Working Active Sites of M1 phase for Ethane Oxidation. Microscopy and Microanalysis, 2016, 22, 790-791.	0.2	1
576	An Unexpected Reaction: Formation of Alkane from Alkane-1-OL on Anatase. Studies in Surface Science and Catalysis, 1981, 7, 1456-1457.	1.5	0

#	Article	IF	CITATIONS
577	<title>Kinetics of catalyzed processes studied by FTIR spectroscopy</title> ., 1992,,.		O
578	Design of Platinum Based Metallic Catalysts for Selective Hydrogenation of Crotonaldehyde. Studies in Surface Science and Catalysis, 1993, 75, 2301-2304.	1.5	0
579	On the conversion of 1â€butene over Ptâ€ZSM5. Catalysis Letters, 2000, 64, 233-238.	1.4	O
580	Sorption of methanol in alkali exchanged zeolites. Studies in Surface Science and Catalysis, 2000, 130, 2957-2962.	1.5	0
581	Common Mechanistic Aspects of Liquid and Solid Acid Catalyzed Alkylation of Isobutane with N-butene. ChemInform, 2003, 34, no.	0.1	0
582	Surface Acidity and Basicity of La2O3, LaOCl, and LaCl3 Characterized by IR Spectroscopy, TPD, and DFT Calculations ChemInform, 2004, 35, no.	0.1	0
583	Kinetic Aspects of the Urea SCR Technology for Mobile Diesel Engines. Studies in Surface Science and Catalysis, 2007, 172, 509-512.	1.5	0
584	Experimental and theoretical investigation of the sticking probability of aromatics on HZSM-5 and SiO2. Studies in Surface Science and Catalysis, 2008, 174, 585-590.	1.5	0
585	Ex-situ and In-situ Analysis of MoVTeNb Oxide by Aberration-Corrected Scanning Transmission Electron Microscopy. Microscopy and Microanalysis, 2014, 20, 108-109.	0.2	0
586	Innentitelbild: Atomic-Scale Determination of Active Facets on the MoVTeNb Oxide M1 Phase and Their Intrinsic Catalytic Activity for Ethane Oxidative Dehydrogenation (Angew. Chem. 31/2016). Angewandte Chemie, 2016, 128, 8914-8914.	1.6	0
587	Zeoliteâ€6tabilized Di―and Tetranuclear Molybdenum Sulfide Clusters Form Stable Catalytic Hydrogenation Sites. Angewandte Chemie, 2021, 133, 9387-9391.	1.6	0
588	Rýcktitelbild: Influence of Intracrystalline Ionic Strength in MFI Zeolites on Aqueous Phase Dehydration of Methylcyclohexanols (Angew. Chem. 47/2021). Angewandte Chemie, 2021, 133, 25368-25368.	1.6	0
589	FY17-PDH-EVTest04 GodInput Impact of the Oxygen Defects1 FY17-PDH-EVTest04 Reduction Rates of Stearic AcidFY17-PDH-T04. Chemistry - A European Journal, 2015, , 2436-2434.	1.7	0
590	Di- and Tetrameric Molybdenum Sulfide Clusters Activate and Stabilize Dihydrogen as Hydrides. Jacs Au, 2022, 2, 613-622.	3.6	0
591	Inside Cover: Controlling Reaction Routes in Nobleâ€Metal atalyzed Conversion of Aryl Ethers (Angew.) Tj ET	Qq <u>J_1</u> 0.7	84314 rgBT /
592	Innentitelbild: Controlling Reaction Routes in Nobleâ€Metalâ€Catalyzed Conversion of Aryl Ethers (Angew. Chem. 30/2022). Angewandte Chemie, 2022, 134, .	1.6	0