
Dipesh Dhakal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3589162/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Marine Rare Actinobacteria: Isolation, Characterization, and Strategies for Harnessing Bioactive Compounds. Frontiers in Microbiology, 2017, 8, 1106.	3.5	108
2	Rapid degradation of naproxen by AgBr-α-NiMoO4 composite photocatalyst in visible light: Mechanism and pathways. Chemical Engineering Journal, 2018, 347, 836-848.	12.7	103
3	Transformation of tetracycline in water during degradation by visible light driven Ag nanoparticles decorated α-NiMoO4 nanorods: Mechanism and pathways. Chemical Engineering Journal, 2019, 373, 259-274.	12.7	94
4	An Insight into the "-Omics―Based Engineering of Streptomycetes for Secondary Metabolite Overproduction. BioMed Research International, 2013, 2013, 1-15.	1.9	79
5	Visible-light-induced Ag/BiVO ₄ semiconductor with enhanced photocatalytic and antibacterial performance. Nanotechnology, 2018, 29, 064001.	2.6	72
6	Inactivation of Staphylococcus aureus in visible light by morphology tuned α-NiMoO4. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 350, 59-68.	3.9	63
7	Cu-α-NiMoO4 photocatalyst for degradation of Methylene blue with pathways and antibacterial performance. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 348, 18-32.	3.9	62
8	Insight into sulfamethoxazole degradation, mechanism, and pathways by AgBr-BaMoO4 composite photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 364, 686-695.	3.9	58
9	Photocatalytic degradation of Rhodamine B and Ibuprofen with upconversion luminescence in Ag-BaMoO4: Er3+/Yb3+/K+ microcrystals. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 339, 36-48.	3.9	49
10	Insight Into Malachite Green Degradation, Mechanism and Pathways by Morphologyâ€Tuned <i>α</i> â€NiMoO ₄ Photocatalyst. Photochemistry and Photobiology, 2018, 94, 552-563.	2.5	49
11	Visible light driven MoS2∫α-NiMoO4 ultra-thin nanoneedle composite for efficient Staphylococcus aureus inactivation. Journal of Hazardous Materials, 2020, 385, 121553.	12.4	49
12	Ag-BaMoO4: Er3+/Yb3+ photocatalyst for antibacterial application. Materials Science and Engineering C, 2017, 78, 1164-1171.	7.3	44
13	Efficient inactivation of Staphylococcus aureus by silver and copper loaded photocatalytic titanate nanotubes. Progress in Natural Science: Materials International, 2018, 28, 15-23.	4.4	40
14	Bioactive molecules from <i>Nocardia</i> : diversity, bioactivities and biosynthesis. Journal of Industrial Microbiology and Biotechnology, 2019, 46, 385-407.	3.0	39
15	Recent Advances in Strategies for Activation and Discovery/Characterization of Cryptic Biosynthetic Gene Clusters in Streptomyces. Microorganisms, 2020, 8, 616.	3.6	39
16	Insight into phosphate doped BiVO4 heterostructure for multifunctional photocatalytic performances: A combined experimental and DFT study. Applied Surface Science, 2019, 466, 787-800.	6.1	36
17	Biosynthesis of flavone C-glucosides in engineered Escherichia coli. Applied Microbiology and Biotechnology, 2018, 102, 1251-1267.	3.6	35
18	Streptomyces sp. VN1, a producer of diverse metabolites including non-natural furan-type anticancer compound. Scientific Reports, 2020, 10, 1756.	3.3	34

DIPESH DHAKAL

#	Article	IF	CITATIONS
19	Efficient inactivation of Pseudomonas aeruginosa by Cu/Co-α-NiMoO4 in visible light. Chemical Engineering Journal, 2018, 347, 366-378.	12.7	33
20	Recent Advances in Exploration and Biotechnological Production of Bioactive Compounds in Three Cyanobacterial Genera: Nostoc, Lyngbya, and Microcystis. Frontiers in Chemistry, 2019, 7, 604.	3.6	31
21	Mechanistic understanding of enhanced photocatalytic activity of N-doped BiVO4 towards degradation of ibuprofen: An experimental and theoretical approach. Molecular Catalysis, 2019, 470, 8-18.	2.0	27
22	Synthesis of Curcumin Glycosides with Enhanced Anticancer Properties Using One-Pot Multienzyme Glycosylation Technique. Journal of Microbiology and Biotechnology, 2017, 27, 1639-1648.	2.1	26
23	Enhanced production of nargenicin A1 and creation of a novel derivative using a synthetic biology platform. Applied Microbiology and Biotechnology, 2016, 100, 9917-9931.	3.6	25
24	Engineering actinomycetes for biosynthesis of macrolactone polyketides. Microbial Cell Factories, 2019, 18, 137.	4.0	25
25	Efficient enzymatic systems for synthesis of novel α-mangostin glycosides exhibiting antibacterial activity against Gram-positive bacteria. Applied Microbiology and Biotechnology, 2014, 98, 8527-8538.	3.6	24
26	Fabrication of Ag-decorated BiOBr- <i>m</i> BiVO ₄ dual heterojunction composite with enhanced visible light photocatalytic performance for degradation of malachite green. Nanotechnology, 2018, 29, 154001.	2.6	23
27	Enhanced Production of Nargenicin A1 and Generation of Novel Glycosylated Derivatives. Applied Biochemistry and Biotechnology, 2015, 175, 2934-2949.	2.9	22
28	Metabolic Engineering of Escherichia coli for Enhanced Production of Naringenin 7-Sulfate and Its Biological Activities. Frontiers in Microbiology, 2018, 9, 1671.	3.5	22
29	Visible light driven Ni–BaMo3O10 photocatalyst for Indigo Carmine degradation: Mechanism and pathways. Materials Science in Semiconductor Processing, 2020, 105, 104697.	4.0	22
30	Complete genome sequence of Streptomyces peucetius ATCC 27952, the producer of anticancer anthracyclines and diverse secondary metabolites. Journal of Biotechnology, 2018, 267, 50-54.	3.8	19
31	Herboxidiene biosynthesis, production, and structural modifications: prospect for hybrids with related polyketide. Applied Microbiology and Biotechnology, 2015, 99, 8351-8362.	3.6	18
32	Overexpression of a pathway specific negative regulator enhances production of daunorubicin in bldA deficient Streptomyces peucetius ATCC 27952. Microbiological Research, 2016, 192, 96-102.	5.3	18
33	Coalition of Biology and Chemistry for Ameliorating Antimicrobial Drug Discovery. Frontiers in Microbiology, 2017, 8, 734.	3.5	18
34	Modular pathway engineering for resveratrol and piceatannol production in engineered Escherichia coli. Applied Microbiology and Biotechnology, 2018, 102, 9691-9706.	3.6	17
35	Improved production of 1-deoxynojirymicin in Escherichia coli through metabolic engineering. World Journal of Microbiology and Biotechnology, 2018, 34, 77.	3.6	16
36	Commentary: Toward a new focus in antibiotic and drug discovery from the Streptomyces arsenal. Frontiers in Microbiology, 2015, 6, 727.	3.5	15

DIPESH DHAKAL

#	Article	IF	CITATIONS
37	Genetic Manipulation of <i>Nocardia</i> Species. Current Protocols in Microbiology, 2016, 40, 10F.2.1-10F.2.18.	6.5	14
38	Microbial production of astilbin, a bioactive rhamnosylated flavanonol, from taxifolin. World Journal of Microbiology and Biotechnology, 2017, 33, 36.	3.6	14
39	Characterization of regioselective flavonoid O- methyltransferase from the Streptomyces sp. KCTC 0041BP. Enzyme and Microbial Technology, 2018, 113, 29-36.	3.2	14
40	Characterization of Tailoring Steps of Nargenicin A1 Biosynthesis Reveals a Novel Analogue with Anticancer Activities. ACS Chemical Biology, 2020, 15, 1370-1380.	3.4	13
41	Heterologous production of cyanobacterial compounds. Journal of Industrial Microbiology and Biotechnology, 2021, 48, .	3.0	12
42	Advances in biochemistry and the biotechnological production of taxifolin and its derivatives. Biotechnology and Applied Biochemistry, 2022, 69, 848-861.	3.1	12
43	Biocatalytic synthesis of peptidic natural products and related analogues. IScience, 2021, 24, 102512.	4.1	12
44	Effect of Different Biosynthetic Precursors on the Production of Nargenicin A1 from Metabolically Engineered Nocardia sp. CS682. Journal of Microbiology and Biotechnology, 2012, 22, 1127-1132.	2.1	11
45	Structural modification of herboxidiene by substrate-flexible cytochrome P450 and glycosyltransferase. Applied Microbiology and Biotechnology, 2015, 99, 3421-3431.	3.6	11
46	Genome-guided exploration of metabolic features of Streptomyces peucetius ATCC 27952: past, current, and prospect. Applied Microbiology and Biotechnology, 2018, 102, 4355-4370.	3.6	11
47	Substrate Scope of O-Methyltransferase from Streptomyces peucetius for Biosynthesis of Diverse Natural Products Methoxides. Applied Biochemistry and Biotechnology, 2018, 184, 1404-1420.	2.9	11
48	Production of a Novel Tetrahydroxynaphthalene (THN) Derivative from Nocardia sp. CS682 by Metabolic Engineering and Its Bioactivities. Molecules, 2019, 24, 244.	3.8	10
49	Complete Genome Sequence of Nocardia sp. Strain CS682, a Producer of Antibacterial Compound Nargenicin A1. Microbiology Resource Announcements, 2019, 8, .	0.6	9
50	Laboratory Maintenance of <i>Nocardia</i> Species. Current Protocols in Microbiology, 2015, 39, 10F.1.1-10F.1.8.	6.5	9
51	Increased Production of Dicinnamoylmethane Via Improving Cellular Malonyl-CoA Level by Using a CRISPRi in Escherichia coli. Applied Biochemistry and Biotechnology, 2020, 190, 325-340.	2.9	8
52	Novel Nargenicin A1 Analog Inhibits Angiogenesis by Downregulating the Endothelial VEGF/VEGFR2 Signaling and Tumoral HIF-11±/VEGF Pathway. Biomedicines, 2020, 8, 252.	3.2	8
53	Recent Advances in the Heterologous Biosynthesis of Natural Products from Streptomyces. Applied Sciences (Switzerland), 2021, 11, 1851.	2.5	8
54	S accharopolyspora Species: Laboratory Maintenance and Enhanced Production of Secondary Metabolites. Current Protocols in Microbiology, 2017, 44, 10H.1.1-10H.1.13.	6.5	7

DIPESH DHAKAL

#	Article	IF	CITATIONS
55	Genetic evidence for the involvement of glycosyltransferase PdmQ and PdmS in biosynthesis of pradimicin from Actinomadura hibisca. Microbiological Research, 2015, 174, 9-16.	5.3	6
56	Identification and enhancing production of a novel macrolide compound in engineered <i>Streptomyces peucetius</i> . RSC Advances, 2021, 11, 3168-3173.	3.6	6
57	Heterologous production of clavulanic acid intermediates in Streptomyces venezuelae. Biotechnology and Bioprocess Engineering, 2017, 22, 359-365.	2.6	5
58	Editorial: Engineering the Microbial Platform for the Production of Biologics and Small-Molecule Medicines. Frontiers in Microbiology, 2019, 10, 2307.	3.5	5
59	Implication of orphan histidine kinase (OhkAsp) in biosynthesis of doxorubicin and daunorubicin in Streptomyces peucetius ATCC 27952. Microbiological Research, 2018, 214, 37-46.	5.3	4
60	Morphologies controlled ZnO for inactivation of multidrug-resistant <i>Pseudomonas aeruginosa</i> in solar light. Nanotechnology, 2020, 31, 084002.	2.6	3
61	Biosynthesis of bioactive tamarixetin in recombinant <i>Escherichia coli</i> . Biotechnology and Applied Biochemistry, 2021, 68, 531-537.	3.1	3
62	Functional Characterization of a Regiospecific Sugar- <i>O</i> -Methyltransferase from <i>Nocardia</i> . Applied and Environmental Microbiology, 2022, 88, .	3.1	3
63	Editorial: Recent Advances in Application of Synthetic Biology for Production of Bioactive Compounds. Frontiers in Bioengineering and Biotechnology, 2021, 9, 819475.	4.1	2
64	Actinomadura Species: Laboratory Maintenance and Ribosome Engineering. Current Protocols in Microbiology, 2017, 44, 10G.1.1-10G.1.12.	6.5	1
65	Bioactive Compounds from Nocardia: Biosynthesis and Production. Environmental Chemistry for A Sustainable World, 2019, , 49-74.	0.5	1
66	Functional Characterization of NgnL, an Alpha/beta-hydrolase Enzyme Involved in Biosynthesis of Acetylated Nodusmicin. Biotechnology and Bioprocess Engineering, 2020, 25, 414-420.	2.6	1
67	UPLCâ€PDA coupled HRâ€TOF ESI/MS 2 â€based identification of derivatives produced by wholeâ€cell biotransformation of epothilone A using Nocardia sp. CS692 and a cytochrome P450 overexpressing strain. Biotechnology and Applied Biochemistry, 2021, , .	3.1	Ο
68	The Future Science. Nepal Journal of Biotechnology, 2012, 2, .	0.4	0
69	Race for Excellence. Nepal Journal of Biotechnology, 2010, 1, .	0.4	Ο
70	Editorial: Engineering the Microbial Platform for the Production of Biologics and Small-Molecule Medicines, Volume II. Frontiers in Microbiology, 2022, 13, 827181.	3.5	0